
HDL Coder™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Release Notes
© COPYRIGHT 2012–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2023a

Model and Architecture Design . 1-2

Use native floating point and vendor-specific floating point in same design
. 1-2

Support for external timing controller in single clock input mode 1-2
Check if DUT pin count exceeds I/O threshold . 1-2
Generate record types for array of buses . 1-3
Enhanced code generation of 3-D matrices for Simulink blocks 1-3
Code generation for 2-D and 3-D matrices in MATLAB-to-HDL workflow

. 1-4
HDL Coder in MATLAB Online . 1-4

Block Enhancements . 1-5

Support for index output port in For Each block in For Each Subsystem
block . 1-5

Optimization support for Tapped Delay blocks with large delay lengths . . . 1-5
Improved optimization compatibility for CORDIC operations 1-5
Use vector, matrix, and bus inputs in HDLMathLib blocks 1-6
Enable and reset ports for Tapped Delay blocks . 1-7
Support for sample time inside triggered subsystems 1-7
HDL code generation for Inherit Complexity block 1-7
Convert word to bits and bits to word . 1-7
Improved code generation for Multiport Switch block 1-8
Functionality being removed or changed . 1-8

Code Generation and Verification . 1-9

Infinite samples times resolve to discrete rates during HDL code generation
. 1-9

Generate test bench simulation scripts for Xilinx Vivado Simulator 1-9
Improved back-annotation in HDL Workflow Advisor 1-9
Check model parameters for unconnected ports and lines 1-10
New layout and added functionalities for MATLAB to HDL workflow 1-10
Line buffer interface support for MATLAB to SystemC Workflow 1-11

Speed and Area Optimizations . 1-13

Distributed pipelining applies through subsystem hierarchy by default . . 1-13
Specify two RAM mapping thresholds to define shape of mapped data . . 1-13
Use delay absorption in feedback loops and conditional subsystems 1-13
Unique global scheduling counters for clock-rate pipelining 1-14

I/O Optimizations . 1-16

iii

Contents

Output statistical characteristics when generating HDL code from frame-
based algorithms . 1-16

Switch between row-major and column-major ordering when generating
code from frame-based algorithms . 1-16

Map large delays to external ports when generating code from a frame-base
algorithm . 1-16

IP Core Generation and Hardware Deployment . 1-18

External memory access when generating an IP core from a frame-based
algorithm . 1-18

Map matrix ports to AXI4-Stream video interfaces 1-19
Generate HDL IP core using generic platform . 1-19
Define Custom Board and Reference Design for Microchip Pure FPGA

Platform . 1-20
Set target frequency for Microchip boards in Generic FPGA and ASIC
workflow . 1-20

Upgrade to Xilinx Vivado 2022.1 . 1-20
Upgrade to Intel Quartus Standard 21.1 . 1-20
Upgrade to Microchip Libero SoC 2022.1 . 1-20
Support for greater than 32-bit widths and double data types on AXI4 slave

interfaces . 1-21
Prototype FPGA designs that access memory using the AXI4 master

interface from MATLAB . 1-21
Program FPGA from MATLAB using generated host interface script 1-22

Simscape Hardware-in-the-Loop Workflow . 1-23

Optimal value of sharing factor for Simscape models 1-23
Support for Simulink-PS Converter block with input filtering using

Partitioning and Trapezoidal Rule solver . 1-23
Specify target hardware settings in Simscape HDL Workflow Advisor . . . 1-23
Enhancements in HDL code generation for tablelookup function 1-24
Support for Simscape models containing real-valued modes 1-24
Support for Trapezoidal Rule solver . 1-24
Support for real-valued event variables . 1-25

R2022b

Model and Architecture Design . 2-2

Max number of I/O pins for FPGA deployment . 2-2
Generate record types for bus . 2-2
Improved 3-D array code generation . 2-2
HDL Coder in Simulink Online . 2-3

Block Enhancements . 2-5

Enable clock-driven outputs for Moore Stateflow charts 2-5
Model Clock and Reset signal using triggered and resettable subsystem

. 2-5
Half and double data type support for Simulink blocks 2-5

iv Contents

Reciprocal square root block in HDL Math Library 2-6
Support for nonzero initial values of output ports in controlled subsystems

. 2-7
Generate HDL code with all Variant Choices from Variant Subsystem 2-7

Code Generation and Verification . 2-9

Highlight dead blocks removed in generated code 2-9
Improved generated HDL code for enumerated data used in a Stateflow

chart . 2-9
Cosimulation workflow support for Vivado simulator 2-9
Support for any order of enumerated types in Stateflow charts 2-9

Speed and Area Optimizations . 2-11

HDL code generation from frame-based algorithms 2-11
MATLAB-to-HDL optimization improvements . 2-11
Simplified distributed pipelining workflow for DUT with subsystem

hierarchy . 2-11
Required oversampling factor reported in clock-rate pipelining error

messages . 2-12
Reduce matching delays for stable inputs and test point outputs 2-12
Enhanced delay absorption . 2-13
Clock-rate pipelining support for rate transition blocks in multi-rate designs

. 2-14
Synchronize clock-rate pipelining of output ports with a valid signal

interface . 2-14
Enhancements in Multicycle Path (MCP) constraints generation 2-14
Optimize generated SystemC code by using pragmas in MATLAB code . . 2-15

IP Core Generation and Hardware Deployment . 2-17

Map complex vector, matrix, and complex matrix ports to AXI4-Stream
interfaces . 2-17

Mixed HDL languages for black box subsystem in IP Core Generation
workflow . 2-17

Generate Board-Independent HDL IP Core for Microchip Platform 2-17
Upgrade to Intel Quartus Prime Pro 21.3 . 2-18
Upgrade to Cadence Stratus HLS 21.2 . 2-18
Support DSP58 architecture for Xilinx Versal Devices 2-18
AXI manager in HDL Workflow Advisor supports Ethernet connection for

Xilinx boards . 2-18
FPGA data capture in HDL Workflow Advisor supports Ethernet connection

for Xilinx boards . 2-19
FPGA data capture in HDL Workflow Advisor supports capture condition

logic . 2-20
Define Custom Board and Reference Design for Microchip Platform 2-21
Functionality being removed or changed . 2-21

Simscape Hardware-in-the-Loop Workflow . 2-23

Optimal value of solver iterations for nonlinear Simscape models 2-23
Optimization of mapping mode vector to index subsystem to achieve higher

clock frequency for nonlinear Simscape networks 2-23
Simscape to HDL Workflow Reference Applications 2-23
HDL code generation support for Simscape tablelookup function 2-23

v

HDL code generation from Simulink-PS Converter block with input filtering
. 2-24

HDL code generation from PS-Simulink Converter block with unit
conversion . 2-24

HDL code generation support for Simscape integer-valued events and mode
charts . 2-24

HDL code generation support for Simscape converter blocks with averaged
switches . 2-24

Clock-rate pipelining optimization enhancements for HDL code generation
from Simscape models . 2-25

R2022a

Model and Architecture Design . 3-2

HDL optimized arithmetic operations . 3-2
Additional functions for MATLAB function blocks that have MATLAB

Datapath architecture . 3-2
Counter reuse from serialization . 3-2
Changes in HDL coding standards . 3-4
Enhanced HDL Model Advisor checks . 3-4

Block Enhancements . 3-5

Option for preserving logic connected to Terminator block 3-5
MinMax block streaming and min and max function vector inputs 3-5
If and Switch Case Action blocks support . 3-5
HDL code generation for variable integer Delay block 3-5
HDL Property 'RAMDirective' for HDL FIFO block 3-6
HDL Block Property 'AsyncRTAsWire' added for Rate Transition block . . . 3-7
Local Reset Port for HDL FIFO block . 3-8
For-Generate loops for Selector block . 3-8
n-Dimensional lookup table . 3-9
Enhancements in trigonometric blocks that use CORDIC-based

approximation method . 3-9
Enhancements in HDL Math library blocks . 3-10
Improved HDL code generation for Serializer1D and Deserializer1D blocks

. 3-11
Matrix types support for design under test (DUT) 3-12
Shift-Add architecture for reciprocal function in Math Function Block . . 3-13
Logic guarding index access preservation . 3-14

Code Generation and Verification . 3-15

Clock frequency specification in MATLAB to HDL Workflow Advisor 3-15
Indexing for scalarized port naming . 3-15
Generation of traceability report in Japanese language 3-15
Improved critical path estimation . 3-15
Enhancements to the genhdltdb function . 3-16
Out-of-bounds error suppression during ModelSim simulation 3-17
SystemC Code Generation from MATLAB Code . 3-18

vi Contents

Speed and Area Optimizations . 3-19

Streaming and sharing area optimization improvements 3-19
Synthesis timing estimates for distributed pipelining 3-21
Adaptive Pipelining for MATLAB to HDL Workflow 3-21
Automatic iterative optimization by using critical path estimation 3-22
Optimizations support for Counter blocks . 3-22
Hierarchical clock-rate pipelining improvements 3-22

IP Core Generation and Hardware Deployment . 3-23

HDL Coder Support for Xilinx Versal Devices: Generate IP core and deploy
reference designs on Xilinx Versal devices . 3-23

HDL Coder Support Package for Microchip FPGA and SoC Devices:
Generate IP core and deploy reference designs on Microchip FPGA and
SoC devices . 3-23

Reference design workflow for Microsemi Libero SoC 3-24
HDL IP core on the Microchip PolarFire SoC Icicle kit 3-25
FPGA and SoC hardware object and FPGA programming workflow 3-25
ID signals in AXI4 Master Interface in IP core generation workflow 3-25
Readback of AXI4 registers for the individual ports in HDL Workflow

Advisor . 3-26
Supported FPGA synthesis tools . 3-27
Half-Precision data types for AXI4 interfaces in IP core generation workflow

. 3-27
Single-Precision data types for AXI4 stream interface in IP core generation
workflow . 3-28

Automated workflow to access memory-mapped locations on FPGA using
HDL Workflow Advisor . 3-28

Xilinx Zynq Linux image for Zynq custom boards 3-28
Functionality being removed or changed . 3-28

Simscape Hardware-in-the-Loop Workflow . 3-30

Optimal value of oversampling factor for nonlinear Simscape models . . . 3-30
Optimization of mode vector to index subsystem for higher clock frequency

. 3-30
Simscape to HDL Workflow Reference Applications 3-30

R2021b

Model and Architecture Design . 4-2

RAM style attributes for Intel/Altera and Microchip 4-2
HDL code check for trigonometric blocks . 4-2
Timestamp macro in custom file header comments 4-2
Enhanced multiple enumeration in Verilog . 4-2
HDL Industry Coding Standard check for the presence of assignments to

the same variable in multiple cascaded conditional regions 4-3
Layout choices for model generation . 4-3

Block Enhancements . 4-5

vii

Newton-Raphson algorithm for Math Reciprocal block 4-5
Magnitude square function in Math Function block 4-5
Half-precision data types for MATLAB Function block 4-5
Double-Precision data types for Logarithmic block 4-5
For-Generate loops for Reshape and Concat blocks 4-5
Fixed-point output types for Divide block and Reciprocal block 4-6
Enhanced HDL math library . 4-6
4-D and 5-D lookup table support . 4-7
Improved denormal optimizations for half-precision data types 4-7
Improved multiplier partitioning DSP QoR . 4-7
Reset minimization in Native Floating-Point (NFP) for ASIC 4-7
Set-Reset (SR) flip-flops . 4-7
HDL Code Generation for Discrete State-Space block 4-8
Trigger and event modes for subsystems, MATLAB Function blocks, and
Stateflow blocks . 4-8

Wireless HDL Toolbox Reference Applications: Implement 5G NR SIB1
recovery, WLAN receiver, and DVB-S2 PL header recovery 4-8

Wireless HDL Toolbox Blocks: Model WLAN LDPC decoder, CCSDS RS
decoder, DVBS2 symbol demodulator, and APP decoder 4-8

Multipixel-Multicomponent Video Streaming: Implement color space
conversion and demosaic interpolation algorithms for high-frame-rate
color video . 4-9

Reflection Padding: Pad image frames by reflecting around the edge pixel
. 4-9

Code Generation and Verification . 4-11

Code View: View your generated HDL code directly in Simulink model
window . 4-11

Stateflow multicycle path enhancements . 4-11
Register-to-register path info option not recommended in HDL Coder . . . 4-12
Execute chart at initialization option for Stateflow charts 4-12
HDL code generation performance improvement for matrix multiplication

. 4-12

Speed and Area Optimizations . 4-14

Enhanced sharing and streaming optimizations for matrix-types 4-14
User control for tunable parameter processing and improve code generation

time . 4-14
Improved zero-protection in Simulink-to-HDL . 4-14
Minimize intermediate initialization of variables in generated HDL code

. 4-15
Improved optimizations for conditional subsystems 4-16
Delay-balancing behavior standardization in BalanceDelays=off network

. 4-17
Lookup Table blocks mapping to RAM and adaptive pipelining 4-17

IP Core Generation and Hardware Deployment . 4-18

Microsemi Libero System On A Chip (SoC) support for IP core generation
workflow . 4-18

MATLAB Prototyping API Enhancements: Support complex data in AXI4
Stream Interface and input register readback in AXI4 Interface 4-18

Upgrade to Intel Quartus Pro 20.2 . 4-18
Inserted JTAG AXI Master at fixed frequency to avoid timing issue 4-18

viii Contents

Unsupported tool version in HDL workflow advisor 4-19
Multicycle path constraint packaging for IP core 4-19
HDL Coder Workflow Advisor: Option to expose DUT clock enable port and

clock enable output port . 4-19
Devicetree generation for IP cores . 4-19
Updates to addAXI4StreamInterface function for fpga hardware connection

object . 4-20
Reset AXI4-Stream TLAST counter . 4-20
HDL Coder Workflow Advisor: Improved code generation times 4-20
HDL Coder Workflow Advisor: Resource and timing report enhancement

. 4-20
Data type for Speedgoat PCIe Interface: Map bus data types to Speedgoat

PCIe Interface . 4-21
HDL Coder Support Package for Xilinx RFSoC Devices: Generate IP core

and deploy reference designs on Xilinx RFSoC devices 4-21

Simscape Hardware-in-the-Loop Workflow . 4-22

Support multiple solver times in Simscape models 4-22
Enable FPGA parameters in the protected model 4-22
RAM mapping for partition solver . 4-22

R2021a

Model and Architecture Design . 5-2

Half precision floating-point example for Field-Oriented Control algorithm
. 5-2

Comments tab in Global Settings pane and option to disable comments . . 5-2
HDL Code Advisor check for file extension based on target language 5-2
Hard Floating Point Support using Intel Quartus Pro 5-2

Block Enhancements . 5-4

Enhancement to parameterized HDL code generation for 1-D and 2-D mask
values . 5-4

HDL code generation for For Each Subsystem block with 1-D and 2-D
partitioning of mask parameters . 5-4

HDL code generation for For Each Subsystem block with matrix ports . . . 5-4
HDL code generation for Interval blocks and additional Detect blocks . . . 5-4
ShiftAdd architecture for Product block to avoid DSP consumption 5-4
HDL Coder library for fixed-point mathematical function blocks with latency

. 5-5
Count hit port for HDL Counter block to indicate when count value resets

. 5-5
3-D lookup table support . 5-5
HDL Code Generation for Data Type Conversion block supports enumerated

data types . 5-5
Enhancement to HDL code generation for Sqrt block 5-6
New HDL-optimized Simulink blocks for reciprocal, divide, and modulo . . 5-6
Reduced HDL resource utilization in fixed-point matrix library blocks 5-6

ix

Wireless HDL Toolbox Reference Applications: Implement 5G NR MIB
recovery for FR2, OFDM interleaver and deinterleaver, and WLAN time
and frequency synchronization . 5-6

Wireless HDL Toolbox Blocks: Model OFDM Equalizer, NR CRC Encoder,
and NR CRC Decoder . 5-7

External Memory Modeling Examples: Model and deploy streaming video
algorithms that require random access to memory (requires SoC Blockset
product) . 5-7

Multipixel-Multicomponent Video Streaming: Implement Pixel Stream
Aligner, Pixel FIFO, and ROI Selector blocks for high-frame-rate color
video . 5-7

Functionality being removed or changed . 5-8

Code Generation and Verification . 5-9

Improvement to HDL code generated for Stateflow Moore Chart blocks
. 5-9

Stateflow Chart property Initialize Outputs Every Time Chart Wakes Up
cleared for HDL code generation . 5-9

HDL block property GenericList for Subsystem blocks with BlackBox
architecture . 5-9

Single file for identical Simulink systems (Atomic and Virtual) 5-9

Speed and Area Optimizations . 5-11

Improved delay balancing support for multiple instances of atomic
subsystems . 5-11

Improved streaming in presence of scalar expanded constants 5-11
Enhancement to optimization that removes redundant logic for atomic

subsystems and model references . 5-11
Enhancement to sharing optimization for matrix data types 5-11
Adaptive pipelining optimization disabled on model by default 5-11
Generation of target-specific timing databases for critical path estimation

. 5-12

IP Core Generation and Hardware Deployment . 5-13

Updates to supported software . 5-13
Data Type Support for AXI4 Slave: Map bus data types to AXI4 slave

interfaces in IP Core generation . 5-13
HDL Workflow Advisor Enhancements . 5-13
FPGA Data Capture in HDL Workflow Advisor supports sequential trigger

. 5-14
FPGA Data Capture integration with IP Core Generation workflow for

generic Xilinx and generic Intel targets . 5-14
Multirate IP Core Generation: Support AXI4-Stream interface on slower-

rate DUT ports . 5-14
Complex data type on AXI4-Stream data port . 5-15
High Bandwidth AXI Stream: Generate IP cores that have bit-widths greater

than 128 bits on AXI4-Stream data ports . 5-15
Generation of HDL IP cores that have greater than 128 bits on external IO

interfaces and external ports . 5-15
Interface option to customize initial value of AXI4 Master and AXI4 Stream

registers . 5-15

Simscape Hardware-in-the-Loop Workflow . 5-17

x Contents

Partitioning solver: Use partitioning solver to generate HDL code from
nonlinear models . 5-17

Optimal value of oversampling factor automatically set on HDL
implementation model . 5-17

R2020b

Model and Architecture Design . 6-2

Half-Precision Native Floating Point: Generate target-independent
synthesizable RTL code from half-precision floating-point models 6-2

HDL code generation for lookup tables that have floating-point types 6-2
HDL Code Advisor check for blocks that introduce latency with fixed-point

types . 6-2
Automatically package protected models with their dependencies 6-2

Block Enhancements . 6-4

Optimized Square Root: Generate high-frequency fixed-point HDL
implementation of square root operations . 6-4

Custom latency for math and trigonometric blocks with fixed-point types
. 6-4

Modulo option for HDL Counter block . 6-4
HDL code generation for Scoped tag visibility for Goto block 6-5
Product block enhancements for HDL code generation 6-5
5G NR HDL MIB Recovery Reference Application: Implement 5G NR MIB

recovery subsystem on FPGA or ASIC . 6-5
OFDM Transmitter and Receiver Reference Applications: Implement custom

OFDM wireless communication system on FPGA or ASIC 6-5
HDL-optimized FIR Decimation block and System object: Downsample

signals using a FIR decimation filter with a hardware-friendly interface
and architecture . 6-5

Gigasample-per-second (GSPS) CIC Decimation HDL-Optimized Block:
Increase throughput of CIC decimation by using frame-based input . . . 6-6

Corner Detector Block and System Object: Detect features using Harris
algorithm . 6-6

Region of Interest (ROI) Resource Sharing: Share hardware resources and
streaming control signals between vertically aligned regions 6-6

Blob Analysis Example: Detect and label connected components in
streaming video . 6-6

HDL Minimum Resource FFT and HDL Streaming FFT blocks have been
removed . 6-6

Code Generation and Verification . 6-8

Option to scalarize vector ports only at DUT level in VHDL code 6-8
HDL code generation for models that have comment through blocks 6-8
HDL code generation for models that have Subsystem Reference blocks

. 6-8
Enhancement to HDL code generation for nontop DUT 6-8
HDL code generation for nonboolean inputs at control ports 6-9
HDL code generation for absolute time temporal logic in Stateflow 6-9

xi

Default HDL simulation command vsim -novopt has changed to vsim -
voptargs=+acc . 6-9

UseMatrixTypesInHDL property not recommended 6-9

Speed and Area Optimizations . 6-10

Option to control removal of unused ports in generated HDL code 6-10
Hierarchy flattening report . 6-10
Optimization enhancements for Sum of Elements and MinMax blocks . . . 6-10

IP Core Generation and Hardware Deployment . 6-11

Rapid prototyping of HDL IP core by using software interface script 6-11
Interface option to customize initial value of AXI4 slave registers 6-11
Generation of HDL IP cores that have greater than 128 bits on internal IO

interface . 6-12
IP core generation workflow for scalarization of vector ports only at DUT

level in VHDL code . 6-12
Intel Quartus Pro SoC Targeting: Generate generic HDL IP core or integrate

IP core into Intel reference designs . 6-12
Arria 10 SoC AXI4 Slave reference design . 6-13
Speedgoat I/O Modules IO331 and IO333 being removed 6-13
Audio filter reference application for Intel SoC device 6-13
Updates to supported software . 6-13

Simscape Hardware-in-the-Loop Workflow . 6-14

Automatic replacement of Simscape subsystem with state-space
implementation . 6-14

Automatic setting of number of solver iterations in Simscape HDL Workflow
Advisor . 6-14

Mapping of state-space parameters to RAM in HDL implementation model
. 6-14

Duplicate configurations removed in generated HDL implementation model
. 6-14

R2020a

Model and Architecture Design . 7-2

Additional HDL modeling guidelines added to documentation 7-2
Functionality being removed or changed . 7-2

Block Enhancements . 7-3

Inverse of streaming matrix input using Gauss-Jordan elimination method
. 7-3

Improvement to readability of bus element port names in HDL code 7-3
New Fixed-Point Designer Simulink block library 7-4
LTE HDL Toolbox name change to Wireless HDL Toolbox 7-4

xii Contents

5G NR Signal Synchronization Reference Application: Use primary and
secondary synchronization signals (PSS and SSS) to detect connection to
valid cell . 7-5

5G NR Polar Encoder and Decoder, 5G NR LDPC Encoder and Decoder
blocks . 7-5

OFDM Modulator, OFDM Channel Estimator, and RS Decoder blocks 7-5
Variable CIC Decimation Factor: Specify decimation factor as an input to the

CIC Decimation HDL Optimized block . 7-6
Gigasample-per-second (GSPS) NCO: Generate frame-based output from

HDL-optimized NCO for high speed applications (requires HDL Coder for
code generation) . 7-6

Corner Detector Block and System Object: Detect features using FAST
algorithm . 7-6

Line Buffer with No Padding: Specify option to not add padding for blocks
that use line buffer memory . 7-6

Code Generation and Verification . 7-8

Obfuscated HDL Output: Generate plain-text HDL code with randomized
identifier names . 7-8

Improvements to HDL code generated for Stateflow charts 7-8

Speed and Area Optimizations . 7-11

Upsampling signals without latency using Rate Transition blocks 7-11

IP Core Generation and Hardware Deployment . 7-12

AXI4-Stream for MIMO: Generate IP cores with multiple input and output
channels . 7-12

High-Bandwidth AXI Master: Generate IP cores with up to 512 bits on AXI4
Master data ports . 7-12

Performance improvement to AXI4 Master write operations 7-12
Dynamic customization of reference design based on reference design

parameters . 7-13
Option to insert JTAG MATLAB AXI Master in standalone FPGA reference

designs (requires HDL Verifier) . 7-14
socExportReferenceDesign Function: Automatically create reference design

(requires SoC Blockset) . 7-14
Intel Quartus Pro Targeting: Synthesize and implement generated HDL code

on Intel FPGAs by using HDL Workflow Advisor 7-14
Speedgoat IO Modules IO331 and IO331-6 being removed 7-15
Updates to supported software . 7-15

Simscape Hardware-in-the-Loop Workflow . 7-17

Simscape Hardware-in-the-Loop: Generate HDL implementation model from
multiple Simscape networks . 7-17

Reduction in latency of HDL implementation model generated from
Simscape algorithm . 7-17

Improvement to single-rate resource sharing in HDL implementation model
. 7-17

xiii

R2019b

Model and Architecture Design . 8-2

HDL code generation for MATLAB Function block in native floating-point
mode . 8-2

HDL Coder contextual tab on Simulink Toolstrip . 8-2
Documentation revision for HDL code generation support for blocks 8-2

Block Enhancements . 8-4

Discrete FIR Filter HDL Optimized block supports complex coefficient
values . 8-4

Process high-frame-rate or high-resolution video with multipixel streaming
interface . 8-4

OFDM Demodulator, Convolutional Encoder, and Puncturer blocks for
custom wireless communication protocols . 8-4

Symbol Demodulator and 1536-point FFT for LTE and NR (5G) designs . . 8-4
HDL-optimized CIC Decimation block and System Object 8-5
Enhancements to fixed-point Division and Reciprocal operators 8-5
FWFT mode for HDL FIFO block . 8-5
HDL code generation enhancements to matrix support 8-5
Block-level option to control HDL code generated for Multiport Switch block

. 8-6
HDL code generation for partitioning of mask parameters in For Each

Subsystem . 8-6
HDL code generation for Fcn block . 8-6

Code Generation and Verification . 8-7

UltraRAM mapping in Xilinx devices . 8-7

Speed and Area Optimizations . 8-8

Enhanced optimization support for MATLAB Function block 8-8
HDL optimizations across MATLAB Function blocks and other Simulink

blocks . 8-8
Flattening of subsystems in presence of optimizations 8-8

IP Core Generation and Hardware Deployment . 8-9

Optimization of AXI4 slave readback logic . 8-9
Customization of AXI4 Slave ID width in Generic IP Core Generation
workflow . 8-9

Option to insert JTAG MATLAB AXI Master in SoC reference designs
(requires HDL Verifier) . 8-9

Performance improvement to AXI Master interfaces in HDL DUT IP core
. 8-10

Updates to supported software . 8-10

Simscape Hardware-in-the-Loop Workflow . 8-11

Enhanced HDL implementation model for Simscape and Simulink plant in
feedback loop . 8-11

xiv Contents

Number display of differential and algebraic variables in Simscape HDL
Workflow Advisor . 8-11

Separation of Get state-space parameters task for extracting and
discretizing equations . 8-11

Generation of implementation model with coefficients as single type and
computation of results in double type . 8-12

R2019a

Model and Architecture Design . 9-2

Protected Model Code Generation: Share protected Simulink models with
the option to allow HDL code generation . 9-2

Enhancements to single-precision native floating-point operators support
. 9-2

Additional block support with double-precision native floating-point code
generation . 9-3

Additional Verilog constructs supported with HDL import 9-3
HDL Coder contextual tab in Simulink Toolstrip . 9-3
HDL Coder Modeling Guidelines in Documentation 9-4

Block Enhancements . 9-5

Streaming Matrix Multiply and Streaming Matrix Inverse Reference
Applications . 9-5

Partition Offset parameter support in For Each Subsystem block 9-5
Enhancements to Assignment and Selector blocks 9-5
Enhancements to Discrete FIR Filter HDL Optimized block and frame-based

Discrete FIR Filter block . 9-6
LTE Reference Applications: Transmitter example and TDD support for SIB

recovery . 9-6
OFDM Modulator block and LTE and 5G Symbol Modulator blocks 9-6
Increased kernel size limits for Image Filter block 9-7

Code Generation and Verification . 9-8

Customization of constant name in VHDL code generated for Lookup Table
data . 9-8

Optimized counters in generated HDL code for Stateflow temporal logic
. 9-8

HDL Coder Workflow: Enhanced options for model generation 9-9
HDL Code Generation: Diagnostics tab renamed to Advanced 9-9

Speed and Area Optimizations . 9-12

Improvements to element-wise matrix transformation 9-12
Optimization of unconnected port for removing redundant logic in design

. 9-12

IP Core Generation and Hardware Deployment . 9-13

xv

DUT AXI4 slave interface connection to multiple AXI Master interfaces in
reference designs . 9-13

Default system with External DDR4 Memory Access reference design . . . 9-13
Generation of HDL IP core without AXI4 slave interfaces 9-13
Improved synchronization of global reset signal to IP core clock domain

. 9-14
Minimization of clock enable signals in IP Core Generation workflow . . . 9-14
Updates to supported software . 9-14

Simscape Hardware-in-the-Loop Workflow . 9-15

Double-precision floating-point support for HDL code generation from
Simscape models . 9-15

Validation logic verification for functional equivalence of HDL
implementation model with Simscape model . 9-15

Simscape to HDL Workflow Reference Applications 9-15

R2018b

Model and Architecture Design . 10-2

Verilog Import: Import synthesizable Verilog code and generate Simulink
model . 10-2

Double-Precision Native Floating Point: Generate target-independent
synthesizable RTL from double-precision floating-point models 10-2

Custom latency specification for native floating-point operators 10-2
Enhancements to supported blocks and complex data types with single-

precision native floating-point . 10-3
Enhancements to output delay absorption for complex multipliers with

single-precision native floating-point . 10-3

Block Enhancements . 10-5

Enhancements to matrix support for HDL code generation 10-5
HDL code generation support for Probe block and blocks that detect change

in input signal value . 10-5
HDL code generation support for Foreach Subsystem with Minimize global

resets setting . 10-5
HDL Coder support for virtual bus containing nonvirtual subbus 10-5
Viterbi Decoder and Depuncturer Block: Decode bitstreams by using the

Viterbi algorithm with puncturing, terminated, and truncated modes
(requires LTE HDL Toolbox) . 10-6

HDL code generation support for complex input signals or complex
coefficients of frame-based Discrete FIR Filter and FIR Decimation blocks
(requires DSP System Toolbox) . 10-6

Discrete FIR Filter HDL Optimized: Select transposed architecture,
optimize symmetric and antisymmetric coefficients, and enable reset port
(requires DSP System Toolbox) . 10-6

Code Generation and Verification . 10-8

xvi Contents

Test Point Integration with FPGA Data Capture: Use FPGA data capture to
specify signals to be captured during FPGA testing by using Test Points in
Simulink . 10-8

User-Interface Improvements to HDL Workflow Advisor and HDL Code
Generation Pane in Configuration Parameters Dialog Box 10-8

Speed and Area Optimizations . 10-11

Enhancements to optimization that removes redundant logic in design
. 10-11

Streaming operation modes of Multiply-Accumulate block 10-11
Different output latencies for designs with clock-rate pipelining enabled at

output ports . 10-11

IP Core Generation and Hardware Deployment 10-14

Xilinx Zynq UltraScale+ MPSoC Targeting: Select from predefined targets
and reference designs to generate code for MPSoC devices 10-14

Multirate IP Core Generation: Target AXI4-Stream and AXI4 Master
interfaces for designs with multiple sample rates 10-14

PCIe MATLAB as AXI Master with External DDR4 Memory Access reference
design for Intel Arria10 GX FPGA Development kit 10-14

Timing failure check in Build FPGA Bistream step of IP Core Generation
workflow . 10-15

Support for read back of AXI4 write registers in IP Core Generation
workflow . 10-15

Microsemi Libero SoC Targeting: Synthesize and implement generated code
on Microsemi FPGAs by using HDL Workflow Advisor 10-16

Speedgoat IO Modules IO321 and IO321-5 being replaced 10-17
Updates to supported software . 10-17

Simscape Hardware-in-the-Loop Workflow . 10-18

Hardware Acceleration of Plant Models: Generate HDL code from Simscape
Electrical switched linear models . 10-18

R2018a

Model and Architecture Design . 11-2

HDL Model Checker integrated with Model Advisor 11-2
Updates to model checks in HDL Coder . 11-2
Enhanced Radix-4 algorithm for Divide and Reciprocal blocks in Native

Floating Point mode . 11-3
Improved shift-and-add algorithm for exponential and hyperbolic functions

in Native Floating Point mode . 11-3
HDL code generation support for all rounding modes of Data Type

Conversion block in Native Floating Point mode 11-3
Floating-point control for Multiport Switch and Selector blocks 11-4

Block Enhancements . 11-5

xvii

Matrix Support: Generate HDL code directly from two-dimensional matrix
data types and operations . 11-5

Additional blocks and block modes supported for HDL code generation
. 11-5

Bit-Natural FFT Output: Directly access the bit-natural output from the
frame-based FFT/IFFT (Requires DSP System Toolbox) 11-5

LTE OFDM demodulation and Gold sequence generation blocks (Requires
LTE HDL Toolbox) . 11-6

Additional pipelining of HDL-optimized Complex to Magnitude-Angle
(Requires DSP System Toolbox) . 11-6

5G filtered-OFDM modulation reference application (Requires LTE HDL
Toolbox) . 11-6

Code Generation and Verification . 11-7

Line-Level Traceability: Navigate directly between Simulink blocks and
corresponding lines of generated HDL code . 11-7

Microsemi FPGA Support: Specify Microsemi Libero SoC as Synthesis Tool
and generate HDL code . 11-7

Concise summary of synthesis results displayed in HDL Workflow Advisor
. 11-7

New Code Generation Report: View more information and navigate through
code generation results more easily . 11-8

Speed and Area Optimizations . 11-11

Critical Path Estimation with Native Floating Point: Report critical path for
designs with single-precision floating-point operations 11-11

Simplification of constant operations and other optimizations for fixed-point
and floating-point arithmetic operations . 11-11

Improvement to reduction of matching delays in clock-rate pipelining
regions across hierarchical boundaries . 11-11

MaxOversampling and MaxComputationLatency parameters being removed
. 11-12

IP Core Generation and Hardware Deployment 11-13

AXI4-Stream for Intel FPGA: Generate IP cores with the AXI4-Stream
interface targeting Intel FPGAs . 11-13

Intel SoC Reference Design: Target the Intel Arria 10 SoC Development Kit
with DDR4 external memory access . 11-13

Simulink test point port mapping in IP Core Generation and Simulink Real-
Time FPGA I/O workflows . 11-13

Audio Reference Design Example on ZYBO Board: Create custom reference
design to run audio algorithm on ZYBO board 11-14

IP Core Generation of I2C Master Controller Example: Generate IP core for
Stateflow-Based I2C Master Controller to configure Audio Codec chip
. 11-14

Ethernet programming method being removed 11-14
Updates to supported software . 11-14

xviii Contents

R2017b

Model and Architecture Design . 12-2

Model Advisor Checks: Check and update your Simulink model for HDL
code generation compatibility . 12-2

Simulink Test Points in HDL: Debug internal signals by automatically
routing the signals to top-level HDL ports . 12-2

Floating-point Support for Simulink Real-Time FPGA I/O: Generate single-
precision floating point HDL for communication over the Simulink Real-
Time PCIe Interface . 12-2

Additional single-precision floating-point operators and block support . . 12-3
Improvements to native floating-point operators and algorithms 12-3
Input Range Reduction setting for Trigonometric Function blocks in native
floating-point mode . 12-3

Block-level latency customization for Discrete Transfer Function and
Discrete Time Integrator blocks with native floating-point 12-4

Block Enhancements . 12-5

Minimum Resource FFT/IFFT: Reduce resource usage with the Burst Radix
2 architecture of the HDL-Optimized FFT (requires DSP System Toolbox)
. 12-5

Support for scalar addressing mode with vector data input to hdl.RAM
System Object . 12-5

New HDL RAMs Block Library and hdl.RAM System Object based blocks
. 12-5

Synchronous versions of Unit Delay blocks with reset and enable ports in
Discrete block library . 12-6

Bilateral filter, bird's-eye-view transform, and line buffer for vision
applications . 12-7

HDL code generation support for Bus Element port blocks 12-7
One-hot and two-hot encoding schemes for enumeration types 12-7
Custom header and footer comments in generated HDL code 12-8

Code Generation and Verification . 12-9

Changes to HDL Code Generation Panel in Configuration Parameters Dialog
Box . 12-9

Speed and Area Optimizations . 12-10

Vector Input Multiply-Accumulate (MAC) Block: Map arithmetic operations
efficiently to FPGA DSP slices . 12-10

Hierarchical Clock Rate Pipelining: Apply clock rate pipelining across
hierarchical boundaries . 12-10

Support for enable-based multicycle path constraints 12-10
Clock-rate pipelining enhancements . 12-11

IP Core Generation and Hardware Deployment 12-12

AXI4 Master Interface: Facilitate communication between your design and
external memory by using the AXI4 Master protocol for more flexible
data access . 12-12

xix

IP Core Generation Support for Xilinx System Generator: Generate an HDL
IP core for DUT containing System Generator blocks 12-12

INOUT port type support for External Port interface in IP Core Generation
workflow . 12-12

Faster Simulink Real-Time FPGA I/O model build time with version register
in generated IP core . 12-12

Default system with External DDR3 Memory Access reference design . 12-13
Updates to supported software . 12-13
HDL Coder support packages renamed . 12-13

R2017a

Model and Architecture Design . 13-2

HDL Floating Point Operations Library: Easily find additional and existing
single-precision floating-point blocks supported for HDL code generation
. 13-2

Floating-Point Latency Customization at Block-Level 13-2
Additional Block and System Object Support with Native Floating Point

. 13-3
Custom reference model prefix specification . 13-3
GenerateWebview parameter name changed to HDLGenerateWebview

. 13-4
Comments in HDL code for Simulink blocks with text annotations 13-4

Block Enhancements . 13-7

For Each Subsystems: Reduce block replication and improve code reuse in
HDL-targeted designs . 13-7

HDL Optimized Filters: Model and generate optimized hardware
implementations for FIR filters (requires DSP System Toolbox) 13-7

HDL Channelizer Block and System Object: Isolate narrowband channels
from a wideband signal and generate HDL with efficient multiplier usage
(requires DSP System Toolbox) . 13-7

Gigasample per Second (GSPS) Signal Processing: Increase throughput of
FIR decimation algorithms by using frame input 13-7

Enhancements to MATLAB Function block support in synchronous
subsystems . 13-8

HDL Coder support for blocks that support bus signal treated as vector
. 13-8

HDL code generation support for Bus Assignment block with nonvirtual bus
. 13-9

Additional HDL Coder bus support . 13-9
HDL code generation support for System Objects with enumeration types

. 13-9

Code Generation and Verification . 13-10

Native Floating-Point Testbench: Generate SystemVerilog DPI, cosimulation,
and FPGA-in-the-loop test benches with single-precision data types
(requires HDL Verifier) . 13-10

xx Contents

More fixed-size variable information in Fixed-Point Conversion step of HDL
Coder App . 13-10

Comments in generated HDL code for MATLAB System blocks 13-10
Global reset signals minimization in generated HDL Code 13-10
HDL code generation support for DUT subsystem with custom HDL

properties . 13-11
Changes in HDL Code Generation Panel in Configuration Parameters Dialog

Box . 13-11
Syntax Highlighting of Generated HDL Code in HTML Report 13-11

Speed and Area Optimizations . 13-12

Improvements to delay balancing in multirate regions 13-12
Functionality Being Removed or Changed . 13-12

IP Core Generation and Hardware Deployment 13-13

Data Type Support for AXI4 Slave: Map floating-point signals and vector
signals to AXI4 slave interfaces in IP core generation 13-13

Incremental Vivado Synthesis: Enable IP caching for faster synthesis of
Xilinx Vivado reference designs . 13-13

IP core generation support for Altera Megafunction 13-14
Custom IP repository specification . 13-14
Xilinx Virtex-2 FPGA board support being removed 13-14
Updates to supported software . 13-14

R2016b

Model and Architecture Design . 14-2

Native Floating Point: Generate target-independent synthesizable RTL from
single-precision floating-point models . 14-2

HDL Coder support for tunable parameters in data dictionary 14-2
Generic ports for DUT mask parameters . 14-2
Simulink diagnostic suppressor option . 14-2

Block Enhancements . 14-5

Gigasample Per Second (GSPS) Signal Processing: Increase throughput of
HDL code generated from Discrete FIR Filter and Integer Delay blocks by
using frame input . 14-5

Bit-reversed input order for HDL-optimized FFT 14-5
High-throughput polyphase filter bank for HDL example 14-5
HDL support for reset port on Discrete FIR Filter 14-5
HDL Coder support for array of buses . 14-5
Synchronous behavior for Resettable Subsystem with State Control block

. 14-6
HDL optimized Sine and Cosine blocks . 14-6
Simpler method to call System objects . 14-6

Code Generation and Verification . 14-7

xxi

Logic Analyzer: Visualize, measure, and analyze transitions and states over
time for Simulink signals . 14-7

HDL Coder support for creating and attaching configuration sets 14-7
VHDL Architecture Name available in Configuration Parameters dialog box

. 14-7
RAM with generic ports enhancement . 14-7
Stateflow comments generated as comments in HDL 14-7
Tolerance check for floating-point libraries . 14-8
Code Generation Report enhancements . 14-9
Comprehensive documentation for HDL coding standard rules 14-9
More discoverable logs and reports for fixed-point conversion in HDL Coder

app . 14-9
Enhancements in generated model for Lookup Tables 14-10
Target and Optimizations pane in HDL Coder Configuration Parameters

. 14-10
Link to Code Generation Report after HDL code generation 14-11

Speed and Area Optimizations . 14-12

Adaptive Pipelining: Specify synthesis tool and target clock frequency for
automatic pipeline insertion and balancing . 14-12

Clock-rate pipelining enhancements . 14-12
Resource sharing enhancements . 14-12
Delay balancing failures reported as errors . 14-13
Optimization of Delay blocks with nonzero initial condition 14-13
Initialization script specification for Delay blocks without reset 14-13

IP Core Generation and Hardware Deployment 14-15

AXI4-Stream Video Interface: Generate HDL code with the AXI4-Stream
Video interface by using the IP core generation workflow 14-15

Customizable FPGA floating-point target configuration 14-15
Additional block support for FPGA floating-point target library mapping

. 14-15
Default video system reference design . 14-15
Custom reference design enhancements . 14-16
IP Core Generation workflow for Xilinx and Altera FPGA devices 14-16
Additional FPGA board support for IP Core Generation workflow 14-17
Target clock frequency specification . 14-17
Simulink Real-Time FPGA I/O workflow support for Xilinx Vivado 14-17
Speedgoat IO333–325K target hardware support 14-17
Updates to supported software . 14-17

R2016a

Model and Architecture Design . 15-2

Gigasample per Second (GSPS) Signal Processing: Increase throughput of
HDL-optimized FFT and IFFT algorithms using frame input 15-2

Tunable and nontunable parameter enhancements 15-2
Reusable HDL code enhancements for subsystems with tunable mask

parameters . 15-2

xxii Contents

HDL Coder support for nondirect feedthrough setting in MATLAB Function
blocks . 15-3

Block Enhancements . 15-4

Synchronous Subsystem Toggle: Specify enable and reset behavior for
cleaner HDL code by using State Control block 15-4

Region-of-interest selection and grayscale morphology 15-5
Nested bus support enhancements . 15-5
Block support enhancements . 15-5

Code Generation and Verification . 15-6

Faster Test Bench Generation and HDL Simulation: Generate SystemVerilog
DPI test benches for large data sets with HDL Verifier 15-6

Code Generation Report enhancements . 15-6
Changes to Fixed-Point Conversion Code Coverage 15-6
Progress indicator for HDL test bench generation 15-7
Test bench generation with updated model stop time 15-7
Performance improvement for MATLAB to HDL test bench generation . . 15-8
Coding standard check for length of control flow statements in a process

block . 15-8
Warnings for non-ASCII characters in generated HDL code 15-8
Japanese translation for resource report . 15-8

Speed and Area Optimizations . 15-9

Resource Sharing Enhancements: Share multipliers and gain operations
that have different data types . 15-9

Biquad Filter block participates in subsystem HDL optimizations 15-9
More functions for Multiply-Add block to map to DSP 15-9
Generation of Multiply-Add blocks for complex multiply operations 15-9
RAM mapping for pipeline and floating-point delays 15-9
Initialization script generated for Delay blocks without reset for ModelSim

simulation . 15-10

IP Core Generation and Hardware Deployment 15-11

Hard Floating-Point IP Targeting: Generate HDL to map to Altera Arria 10
floating-point units at user-specified target frequency 15-11

End-to-end scripting for Simulink Real-Time FPGA I/O workflow 15-11
SoC device programmed by using Ethernet connection 15-11
Custom programming method for IP Core Generation workflow 15-11
Interface connection name and type for custom reference designs 15-11
Updates to supported software . 15-12
Automatic generation of FPGA top-level wrapper based on workflow . . 15-12

R2015aSP1

Bug Fixes

xxiii

R2015b

Model and Architecture Design . 17-2

Model Arguments: Parameterize instances of model reference blocks . . . 17-2
Integration with Xilinx Vivado System Generator for DSP blocks 17-2
struct input and output for top-level MATLAB design function 17-2
Tunable parameters in MATLAB Function block 17-2
Output initialization requirement for Stateflow Moore Charts 17-2
Enforce ASCII character requirement for model property values 17-3

Block Enhancements . 17-4

Expanded Bus Support: Generate HDL for enabled or triggered subsystems
with bus inputs and for black boxes with bus I/O 17-4

Library Browser view shows blocks supported for HDL code generation
. 17-4

Trigonometric Function block with sin or cos function can have vector
inputs . 17-4

Discrete FIR Filter supports HDL optimizations 17-4
HDL-optimized FIR Rate Conversion block and System object 17-5

Code Generation and Verification . 17-6

HDL Coder Configuration Parameters in list view 17-6
Support for configuration parameter Default parameter behavior 17-6
Test bench performance improvements with file I/O 17-6
Image processing examples . 17-7

Speed and Area Optimizations . 17-8

Quality of Results Improvement: Stream and share resources more broadly
and efficiently . 17-8

Multiply-Add block . 17-8
Hierarchy flattening for masked subsystems and user library blocks 17-8
Loop optimization improvement . 17-8
Complex Gain speed optimization . 17-8
Redesigned serializer for streaming and resource sharing 17-9
Tapped Delay optimization . 17-9

IP Core Generation and Hardware Deployment 17-10

Tunable Parameters: Map to AXI4 interfaces to enable hardware run-time
tuning by the embedded software on the ARM processor 17-10

End-to-end scripting from design through IP core generation, FPGA
Turnkey, and generic ASIC/FPGA workflows 17-10

Synthesis objective for synthesis tool target optimization 17-10
AXI4-Stream vector interface . 17-10
Connect IP core with other IP blocks in custom reference designs 17-11
Kintex UltraScale and Virtex UltraScale device family support in generic

ASIC/FPGA and IP core generation workflows 17-11

xxiv Contents

R2015a

Model and Architecture Design . 18-2

Localized control using pragmas for pipelining, loop streaming, and loop
unrolling in MATLAB code . 18-2

Model templates for HDL code generation . 18-2
Tunable parameter data type and model reference support enhancements

. 18-3
Include custom or legacy code using DocBlock . 18-4
Single library for VHDL code generated from model references 18-4
Timing controller architecture and postfix options in Configuration

Parameters dialog box and HDL Workflow Advisor 18-4
Functionality Being Removed or Changed . 18-4

Block Enhancements . 18-6

Enumeration support at DUT ports . 18-6
Map to multiple RAM banks . 18-6
Code generation for bus output from Bus Selector and Constant blocks

. 18-6
Initial condition for Deserializer1D . 18-6
Block support enhancements . 18-6
Code generation for predefined System objects in MATLAB System block

. 18-6
Specify filter coefficients using a System object 18-7
Libraries for HDL-supported DSP System Toolbox and Communications

Toolbox blocks . 18-7
Support for image processing, video, and computer vision designs in new

Vision HDL Toolbox product . 18-7
Support for ‘inherit via internal rule’ data type setting on FIR Decimation

and Interpolation blocks . 18-7

Code Generation and Verification . 18-8

Coding standard check for X and Z constants . 18-8
Coding style improvements . 18-8
Example HDL implementation of LTE OFDM modulator and detector with

LTE Toolbox . 18-8

Speed and Area Optimizations . 18-9

Critical path estimation without running synthesis 18-9
Clock-rate pipelining enhancements . 18-9
Partitioning for large multipliers to improve clock frequency and DSP reuse

on the FPGA . 18-9
Highlighting for blocks in the model that prevent retiming 18-9
Resource sharing for adders and more control over shareable resources

. 18-10
Speed and area optimizations for designs that use Unit Delay Enabled, Unit

Delay Resettable, and Unit Delay Enabled Resettable 18-10
Resource sharing for multipliers and adders with input data types in
different order . 18-10

Vector streaming for MATLAB code . 18-10

xxv

IP Core Generation and Hardware Deployment 18-12

Mac OS X platform support . 18-12
AXI4-Stream interface generation for Xilinx Zynq IP core 18-12
Custom reference design and custom SoC board support 18-12
Automatic iterative optimization for IP core generation and FPGA Turnkey
workflows . 18-12

Speedgoat IO331-6 digital I/O interface target 18-12
IP core settings saved with model . 18-12
Updates to supported software . 18-13

R2014b

Model and Architecture Design . 19-2

Custom or legacy HDL code integration in the MATLAB to HDL workflow
. 19-2

Model reference as DUT for code generation . 19-2
Tunable parameter support for Gain and Constant blocks 19-2
Code generation for Stateflow active state output 19-2
Clock enable minimization for code generated from MATLAB designs . . . 19-2
HDL Block Properties dialog box shows only valid architectures 19-2
2-D matrix types in HDL generated for MATLAB matrices 19-2

Block Enhancements . 19-4

Code generation for HDL optimized FFT/IFFT System object and HDL
optimized Complex to Magnitude-Angle System object and block 19-4

Added features to HDL optimized FFT/IFFT blocks, including reduced
latency . 19-4

HDL Reciprocal block with Newton-Raphson Implementation 19-4
Serializer1D and Deserializer1D blocks . 19-5
Additional blocks supported for code generation 19-5
Composite user-defined System object support . 19-5
System object output and update method support 19-5
hdlram renamed to hdl.RAM . 19-5
Functionality Being Removed or Changed . 19-6

Code Generation and Verification . 19-7

Coding standards customization . 19-7
HDL Designer script generation . 19-7
Traceable names for RAM blocks and port signals 19-7
for-generate statements in generated VHDL code 19-7
Validation model generation regardless of delay balancing results 19-7

Speed and Area Optimizations . 19-8

Clock-rate pipelining to optimize timing in multi-cycle paths 19-8
RAM mapping for user-defined System object private properties 19-8
Highlighting for feedback loops that inhibit optimizations 19-8
Optimizations available for conditional-execution subsystems 19-8

xxvi Contents

Variable pipelining in conditional MATLAB code 19-9
Optimizations available with UseMatrixTypesInHDL for MATLAB Function

block . 19-9

IP Core Generation and Hardware Deployment 19-10

Support for Xilinx Vivado . 19-10
IP core generation for Altera SoC platform . 19-10
Custom HDL code for IP core generation from MATLAB 19-10
Target platform interface mapping information saved with model 19-10
Documentation installation with hardware support package 19-11

R2014a

Model and Architecture Design . 20-2

HDL block library in Simulink . 20-2
Persistent keyword not needed in HDL code generation 20-2
Negative edge clocking . 20-2
Bidirectional port specification . 20-3
Port names in generated code match signal names 20-3
ModelReference default architecture for Model block 20-3
Reset for timing controller . 20-3
Reset port optimization . 20-4
Functionality Being Removed or Changed . 20-4

Block Enhancements . 20-6

Code generation for enumeration data types . 20-6
Code generation for FFT HDL Optimized and IFFT HDL Optimized blocks

. 20-6
Bus support improvements . 20-6
Variant Subsystem support for configurable models 20-6
Trigger signal can clock triggered subsystems . 20-6
2-D matrix types in code generated for MATLAB Function block 20-6
64-bit data support . 20-7
HDL code generation from MATLAB System block 20-7
System object methods in conditional code . 20-7
Dual Rate Dual Port RAM block . 20-7
Additional blocks and block implementations supported for code generation

. 20-8

Code Generation and Verification . 20-9

Errors instead of warnings for blocks not supported for code generation
. 20-9

Ascent Lint script generation . 20-9
Incremental code generation and synthesis . 20-9
Automatic C compiler setup . 20-9

Speed and Area Optimizations . 20-10

xxvii

RAM mapping scheduler improvements . 20-10
Performance-prioritized retiming . 20-10
Retiming without moving user-created design delays 20-10
Resource sharing factor can be greater than number of shareable resources

. 20-10
Reduced area with multirate delay balancing . 20-11
Serializer-deserializer and multiplexer-demultiplexer optimization 20-11

IP Core Generation and Hardware Deployment 20-12

ZC706 target for IP core generation and integration into Xilinx EDK project
. 20-12

Automatic iterative clock frequency optimization 20-12
Synthesis attributes for multipliers . 20-12
Custom HDL code for IP core generation . 20-12
Synthesis and simulation tool addition and detection after opening HDL
Workflow Advisor . 20-12

xPC Target is Simulink Real-Time . 20-13
Updates to supported software . 20-13

R2013b

Model and Architecture Design . 21-2

Model reference support and incremental code generation 21-2
Code generation for subsystems containing Altera DSP Builder blocks

. 21-2
Module or entity generation for local functions in MATLAB Function block

. 21-2
Reset port optimization . 21-2
Load constants from MAT-files . 21-2

Block Enhancements . 21-4

Code generation for user-defined System objects 21-4
Bus signal inputs and outputs for MATLAB Function block and Stateflow

charts . 21-4
HDL Counter has specifiable start value . 21-4
Maximum 32-bit address for RAM . 21-4
Removing HDL Support for NCO Block . 21-4

Code Generation and Verification . 21-5

Coding style improvements according to industry standard guidelines . . 21-5
Coding standard report target language enhancement and text file format

. 21-5
UI for SpyGlass, Leda, and custom lint tool script generation 21-5
File I/O to read test bench data in VHDL and Verilog 21-5
Floating point for FIL and HDL cosimulation test bench generation 21-6
Fixed-point file name change . 21-6

Speed and Area Optimizations . 21-7

xxviii Contents

RAM inference in conditional MATLAB code . 21-7
Coding style for improved ROM mapping . 21-7
Pipeline registers between adder or multiplier and rounding or saturation

logic . 21-7
Distributed pipelining improvements with loop unrolling in MATLAB

Function block . 21-7

IP Core Generation and Hardware Deployment . 21-8

IP core integration into Xilinx EDK project for ZC702 and ZedBoard 21-8
FPGA Turnkey and IP Core generation in MATLAB to HDL workflow 21-8
Synthesis tool addition and detection after MATLAB-to-HDL project creation

. 21-8
Synthesis script generation for Microsemi Libero and other synthesis tools

. 21-8
Floating-point library mapping for mixed floating-point and fixed-point

designs . 21-9
xPC Target FPGA I/O workflow separate from FPGA Turnkey workflow

. 21-9
AXM-A75 AD/DA module for Speedgoat IO331 FPGA board 21-9
Speedgoat IO321 and IO321-5 target hardware support 21-9
Support package for Xilinx Zynq-7000 platform 21-9
Support package for Altera FPGA boards . 21-10
Support package for Xilinx FPGA boards . 21-10
Additional FPGA board support for FIL verification, including Xilinx KC705

and Altera DSP Development Kit, Stratix V edition 21-11

R2013a

Model and Architecture Design . 22-2

Code generation for System objects in a MATLAB Function block 22-2
Output folder structure includes model name . 22-2
Prefix for module or entity name . 22-2
Functionality being removed . 22-2

Block Enhancements . 22-3

Single rate Newton-Raphson architecture for Sqrt, Reciprocal Sqrt 22-3
Additional System objects supported for code generation 22-3
Additional blocks supported for code generation 22-3

Code Generation and Verification . 22-4

Static range analysis for floating-point to fixed-point conversion 22-4
Cosimulation and FPGA-in-the-Loop for MATLAB HDL code generation

. 22-4
HDL coding standard report and lint tool script generation 22-4
File I/O to read test bench data in Verilog . 22-5

Speed and Area Optimizations . 22-6

xxix

User-specified pipeline insertion for MATLAB variables 22-6
Resource sharing and streaming without over clocking 22-6
Resource sharing for the MATLAB Function block 22-6
Finer control for delay balancing . 22-6
Complex multiplication optimizations in the Product block 22-6

IP Core Generation and Hardware Deployment . 22-7

Generation of custom IP core with AXI4 interface 22-7
Coprocessor synchronization in FPGA Turnkey and IP Core Generation
workflows . 22-7

Speedgoat IO331 Spartan-6 FPGA board for FPGA Turnkey workflow . . . 22-7

R2012b

Input parameter constants and structures in floating-point to fixed-point
conversion . 23-2

RAM, biquad filter, and demodulator System objects 23-2
HDL RAM System object . 23-2
HDL System object support for biquad filters . 23-2
HDL support with demodulator System objects . 23-2

Generation of MATLAB Function block in the MATLAB to HDL workflow
. 23-2

HDL code generation for Reed Solomon encoder and decoder, CRC
detector, and multichannel Discrete FIR filter 23-2

HDL code generation . 23-2
Multichannel Discrete FIR filters . 23-3

Targeting of custom FPGA boards . 23-3

Optimizations for MATLAB Function blocks and black boxes 23-3

Generate Xilinx System Generator Black Box block from MATLAB 23-3

Save and restore HDL-related model parameters 23-3

Command-line interface for MATLAB-to-HDL code generation 23-3

User-specifiable clock enable toggle rate in test bench 23-4

RAM mapping for dsp.Delay System object . 23-4

Code generation for Repeat block with multiple clocks 23-4

Automatic verification with cosimulation using HDL Coder 23-4

ML605 Board Added To Turnkey Workflow . 23-4

xxx Contents

R2012a

Product Name Change and Extended Capability 24-2

Code Generation from MATLAB . 24-2

Code Generation from Any Level of Subsystem Hierarchy 24-3

Automated Subsystem Hierarchy Flattening . 24-3

Support for Discrete Transfer Fcn Block . 24-3

User Option to Constrain Registers on Output Ports 24-3

Distributed Pipelining for Sum of Elements, Product of Elements, and
MinMax Blocks . 24-3

MATLAB Function Block Enhancements . 24-3
Multiple Accesses to RAMs Mapped from Persistent Variables 24-3
Streaming for MATLAB Loops and Vector Operations 24-4
Loop Unrolling for MATLAB Loops and Vector Operations 24-4

Automated Code Generation from Xilinx System Generator for DSP
Blocks . 24-4

Altera Quartus II 11.0 Support in HDL Workflow Advisor 24-4

Automated Mapping to Xilinx and Altera Floating Point Libraries 24-4

Vector Data Type for PCI Interface Data Transfers Between xPC Target
and FPGA . 24-4

New Global Property to Select RAM Architecture 24-5

Turnkey Workflow for Altera Boards . 24-5

HDL Support For Bus Creator and Bus Selector Blocks 24-5

HDL Support For HDL CRC Generator Block . 24-5

HDL Support for Programmable Filter Coefficients 24-5
Notes . 24-6

Synchronous Multiclock Code Generation for CIC Decimators and
Interpolators . 24-6

Filter Block Resource Report Participation . 24-6

HDL Block Properties Interface Allows Choice of Filter Architecture
. 24-7

xxxi

HDL Support for FIR Filters With Serial Architectures and Complex
Inputs . 24-8

HDL Support for External Reset Added for Proportional-Integral-
Derivative (PID) and Discrete Time Integrator (DTI) Blocks 24-8

xxxii Contents

R2023a

Version: 4.1

New Features

Bug Fixes

Compatibility Considerations

1

Model and Architecture Design

Use native floating point and vendor-specific floating point in same
design
Previously, you could either use native floating point (NFP) to generate target-independent HDL code
or use a vendor-specific FPGA floating point library to generate target-specific HDL code. You could
not use both native floating point and a vendor-specific floating point design together.

Starting in R2023a, you can create a design and generate code that uses both HDL Coder native
floating-point and vendor-specific FPGA floating-point IP. Using both IPs together more efficiently
uses resources on the FPGA, such as hardened DSP floating point adder or multiplier primitives,
which allows you to fit a bigger design into the FPGA fabric. This mixed design is advantageous for
large and complex models. Additionally, you can now map blocks that are unsupported by the vendor
library to native floating point and use the vendor library to map other blocks to vendor-specific
floating point resources. See “Floating Point IP Library Parameters”.

You cannot use both native floating-point and vendor-specific libraries when generating HDL code for
MATLAB® function designs.

Compatibility Considerations
• In R2023a, you cannot use only vendor-specific floating-point libraries. You can use either only

native floating-point libraries or native floating-point and vendor-specific floating-point libraries. If
you load a model created before R2023a or a command-line script that creates an vendor-only
floating-point IP configuration object, the object is converted to use both the vendor-specific and
the native floating point libraries, and the native floating-point settings use the default settings.

• If you export an R2023a Simulink® model that uses both native floating-point and vendor-specific
floating-point libraries to an earlier version of Simulink, the configuration becomes a native
floating-point only configuration and the vendor-specific settings are removed, such as the
VendorLibrary, VendorLibrarySettings, and VendorIPConfig settings.

Support for external timing controller in single clock input mode
Previously, when you set the model configuration parameter Clock inputs to Single and generated
HDL code from a multirate model, HDL Coder generated a timing controller in a separate HDL file
and instantiated it in the DUT at the top level. Starting in R2023a, you can set the configuration
parameter Timing controller architecture to external to prevent the creation of a timing
controller inside the DUT during HDL code generation, which allows you to integrate your own
custom external timing controller into the design. This option moves the timing controller externally
and exposes the clock enable signals from the top-level design that you can use to integrate your own
timing controller.

Check if DUT pin count exceeds I/O threshold
In R2023a, you can specify the type of message generated when the DUT pin count in the generated
code exceeds the maximum number of I/O pins set by the Max number of I/O pins for FPGA
deployment parameter. To specify the type of message, use the new Check for DUT pin count
exceeding I/O Threshold parameter. The parameter default is set to Error as the message type

R2023a

1-2

and can be changed to Warning or None. If you generate a warning or error message, the message
appears in the HDL Code Generation Check Report or the HDL Conformance Report.

Generate record types for array of buses
In R2023a, HDL Coder has improved the functionality for generating record types for bus signals. You
can now generate:

• An array of records for a Simulink model that has an array of bus at the interface
• Record types for bus signals and an array of bus at a model reference interface
• Record types for a nested bus that has an array of bus

Generating an array of records significantly reduces the number of ports in an entity.

Generated code without array of records
(R2022b)

Generated code with array of records
(R2023a)

Entity Subsystem IS

 Port(clk : IN std_logic;

 reset : IN std_logic;

 enb : IN std_logic;

 In1_1 : IN SubBuslogicType_record;

 In1_2 : IN SubBuslogicType_record;

 In1_3 : IN SubBuslogicType_record;

 In1_4 : IN SubBuslogicType_record;

 Out1_1 : IN SubBuslogicType_record;

 Out1_2 : IN SubBuslogicType_record;

 Out1_3 : IN SubBuslogicType_record

 Out1_4 : IN SubBuslogicType_record;

);

END Subsystem;

Entity Subsystem IS

 Port(clk : IN std_logic;

 reset: IN std_logic;

 enb : IN std_logic;

 In1 : IN vector_of_SubBuslogicType_record(0 TO 3);

 Out1 : IN vector_of_SubBuslogicType_record(0 TO 3);

);

END Subsystem;

The record type is the useful for simplifying interfaces and maintaining a large number of signals at
the entity level. To generate code with record types for bus signals, enable Generate Record Type
for Bus option in the configuration parameter settings. For more information, see “Generate VHDL
Code with Record Types for Bus Signals”.

Enhanced code generation of 3-D matrices for Simulink blocks
You can now generate HDL code for these Simulink blocks with a 3-D matrix as input:

 Model and Architecture Design

1-3

• For Each Subsystem
• Assignment
• Selector

Code generation for 2-D and 3-D matrices in MATLAB-to-HDL workflow
In R2023a, HDL Coder has added 2-D and 3-D matrix support in MATLAB-to-HDL workflow. You can
generate code for an MATLAB function that contains 2-D or 3-D matrix operations. For example, the
MATLAB function t_mul performs the multiplication operation on the input variable a, where a is a
3-D array of dimension (2 x 2 x 2).

function y = t_mul(a)

y = a.*a;

HDL Coder in MATLAB Online
HDL Coder is now available in MATLAB Online. You can generate HDL code for your MATLAB
algorithm in MATLAB Online. For more information, see “HDL Code Generation from MATLAB”.

R2023a

1-4

Block Enhancements

Support for index output port in For Each block in For Each Subsystem
block
You can now generate HDL code from a model that contains a For Each Subsystem block that has the
Show partition index output port (zero-based indexing) parameter enabled on the For Each
block. When enabled, the parameter displays the iteration index of the for loop. For more
information, see “Show partition index output port (zero-based indexing)”.

Optimization support for Tapped Delay blocks with large delay lengths
Previously, if your design contained a Tapped Delay block with a delay length of 20 or greater, HDL
Coder prevented HDL optimizations from being applied to the block during HDL code generation.
Starting in R2023a, HDL optimizations support the Tapped Delay block regardless of delay length as
long as the block is not in a conditional subsystem, such as an Enabled, Triggered, or Resettable
subsystem. HDL optimizations are now compatible with large Tapped Delay blocks without causing
performance issues, such as long code generation time.

Improved optimization compatibility for CORDIC operations
Starting in R2023a, resource sharing and streaming HDL optimizations now support CORDIC
operations, such as a Trigonometric Function block with the Approximation method parameter set
to CORDIC.

For example, suppose that you generate HDL code from the model in the image below, which contains
a subsystem that has a Trigonometric Function block with the Function parameter set to sin and
the Approximation method parameter set to CORDIC and no area optimizations applied. The
resource report shows the following area usage:

 Block Enhancements

1-5

If you then set the subsystem StreamingFactor parameter to 2, the streaming applied to the
Trigonometric Function block reduces the Adders and Subtractors, Multiplexers, and Static Shift
operators used by the design by half.

For more information on resource sharing and streaming, see “Resource Sharing” and “Streaming”.

Use vector, matrix, and bus inputs in HDLMathLib blocks
HDLMathLib blocks now support vectors, matrices, and bus as input. You can simulate the following
HDLMathLib blocks with latency and generate HDL code for them using vectors, matrices, and buses
as inputs:

• Sqrt
• Sin
• Cos
• SinCos
• Cos+jSin

R2023a

1-6

• Atan2
• Divide

Limitation: Divide block does not support matrix inputs.

Enable and reset ports for Tapped Delay blocks
In 2023a, you can use the Tapped Delay block with enable and reset ports and generate HDL code.
The Tapped Delay block delays an input by the specified number of sample periods and provides an
output signal for each delay.

These tapped delay blocks support enable or reset functionality:

• Tapped Delay Enabled Synchronous
• Tapped Delay Resettable Synchronous
• Tapped Delay Enabled Resettable Synchronous

These blocks use synchronous semantics, which are more compatible with hardware. The blocks are
available in the Simulink Library Browser under HDL Coder > Discrete.

Support for sample time inside triggered subsystems
For a triggered subsystem with synchronous semantics, you can now specify the sample time for the
blocks in the subsystem. The sample time specified in the triggered subsystem can be propagated in
the entire model.

With this enhancement, you can specify a Sample time value other than inherit (-1) for the blocks in
the triggered subsystem. Then, simulate the blocks at the required sample time and generate HDL
code.

HDL code generation for Inherit Complexity block
Using HDL Coder, you can now generate HDL code for the Inherit Complexity block. This block is
available in the Simulink Library Browser under DSP System Toolbox > Signal Management >
Signal Attributes. The block changes the complexity of input data to match with the reference
input. For example, if the data is complex and the reference is real, then the imaginary part of the
input is removed. Use the block in digital signal processing applications where you want to control
the complexity of the input signal.

The Inherit Complexity block supports HDL code generation for these input types:

• Input complexities, such as real or complex, at the data and reference port
• Fixed-point and floating-point input data types
• Vector, matrix, and bus inputs

Convert word to bits and bits to word
In R2023a, two new blocks, Bits to Word and Word to Bits, are available in the HDL Coder library. You
can access these blocks from the Simulink Library Browser under HDL Coder > Logic and Bit
Operations.

 Block Enhancements

1-7

• The Bits to Word block converts the N-sized input vector of one bit to the N-bit integer. The output
of the block is an unsigned integer that has word length of N.

• The Word to Bits block converts the integer of word length N to the output vector of one bit. The
output of the block is a vector of size specified in the block parameter Maximum Word length.

The blocks have the following limitations:

• You cannot use floating-point input for these blocks.
• The Word to Bits block does not support vector, matrix, and bus inputs.
• The Bits to Word block does not support matrix inputs.

Improved code generation for Multiport Switch block
You can generate the code for a Multiport Switch block whose data ports are represented with
specific port indices. In previous releases, code generation supports only enumerated types at the
control input. In R2023a, you can now use the following input data types for the control input:

• Fixed-point and floating-point types
• Signed and unsigned integer types
• Vector, matrix, and bus types

Using this enhancement, you can specify indices to input ports other than zero-based indexing and
one-based indexing. The value of the control input determines which data input passes to the output.

To configure the Multiport Switch block with specify indices mode, set the Data port order block
parameter to Specify indices. Then, enter the port indices in the Data port indices block
parameter.

Functionality being removed or changed
Removed cascade architecture from Sum of Elements and Product of Elements blocks

In R2023a, HDL Coder no longer has the Cascade architecture option for Sum of Elements and
Product of Elements blocks. You can use the Linear or Tree architecture option for these blocks.
For the old models that uses Cascade architecture for Sum of Elements and Product of Elements
blocks, HDL Coder converts the block architecture to Tree during HDL implementation.

In your old model that has Sum of Elements blocks with Cascade architecture and using
Accumulator data type other than Inherit: Inherit via internal rule, change the
Accumulator data type to Inherit: Inherit via internal rule for HDL code generation.

R2023a

1-8

Code Generation and Verification

Infinite samples times resolve to discrete rates during HDL code
generation
Previously, when generating HDL code from a model design that contained infinite sample times, you
could not apply optimizations that added or handled latency in your design, such as streaming,
sharing, clock-rate pipelining, or delay balancing. Starting in R2023a, you can generate HDL code
from a Simulink model with optimizations that add latency and contain infinite sample times that do
not propagate to the DUT output. During HDL code generation, the infinite sample times are resolved
to discrete rates in the generated model and HDL code. For more information, see “Use Discrete and
Finite Sample Time for Constant Block”.

Generate test bench simulation scripts for Xilinx Vivado Simulator
In R2023a, HDL Coder can generate scripts to simulate the generated HDL code in a Xilinx® Vivado®

Simulator environment. HDL Coder generates simulation script files that can run on Xilinx Vivado
Simulator and test your design. The following simulation script files are generated for the DUT model
and are compatible with Xilinx Vivado Simulator:

• DUT_compile.tcl – Compilation script to compile and load the generated model
• DUT_tb_compile.tcl – Compilation script to compile and load the generated test bench
• DUT_tb_sim.tcl – Simulation script to execute the simulation
• DUT_vivado_sim.tcl – Simulation script to create a new project and then run compile scripts

To test your design with Xilinx Vivado Simulator:

1 In the Configuration Parameters window, click HDL Code Generation > Test Bench and set
Simulation tool to Xilinx Vivado Simulator.

2 Set the tool path to Xilinx Vivado by using the hdlsetuptoolpath function.
3 Generate HDL code and a test bench for your Simulink model by using the makehdl and

makehdltb functions.
4 Change directory to folder path where simulation scripts are generated.
5 To run the simulation script, enter this command in the MATLAB Command Window.

 !vivado -mode batch -source DUT_vivado_sim.tcl

After the script runs a message appears in the MATLAB Command Window to indicate whether
the test passed or failed.

You can also open Xilinx Vivado Simulator and run the script file. To run the script, click Tools and
then click Run Tcl script. Go to the folder path that contains the HDL and script files and select the
Tcl script, DUT_vivado_sim.tcl. The script runs, and the simulation window in Xilinx Vivado shows
the simulation results.

Improved back-annotation in HDL Workflow Advisor
HDL Coder has enhanced the functionality of annotating a model with synthesis results. Using the
Annotate Model with Synthesis Result task in the HDL Workflow Advisor, you can analyze the

 Code Generation and Verification

1-9

critical path in your model. Starting in R2023a, you can perform the annotation on the original as
well as generated model. In prior releases, annotation was performed only on the original Simulink
model.

Use the Choose Model to Annotate option in the Annotate Model with Synthesis Result task to
select between the original and generated model. Using this feature, you can visualize the critical
path in your original or generated model. To see the critical path, run the workflow to synthesis and
then open the timing reports. The critical paths are highlighted in your model. Analyzing the timing
information and critical paths helps you to optimize your design.

The Annotate Model with Synthesis Result task is not available when you select Intel® Quartus®

Pro or Microchip Libero® SoC as the synthesis tool. For more information, see “HDL Code Generation
and FPGA Synthesis from Simulink Model”.

Check model parameters for unconnected ports and lines
Using HDL Model Advisor Check for model parameter suited for HDL code generation, you can
now check the parameter settings for unconnected ports and lines in your model. For a model that
contains the unconnected ports or lines and set the configuration parameters Unconnected block
input ports, Unconnected block output ports, and Unconnected lines to None. When you run
Check for model parameter suited for HDL code generation for your model, the check displays
the warning for these model parameters. For HDL code generation, set these parameters to error or
warning.

New layout and added functionalities for MATLAB to HDL workflow
In R2023a, the configuration parameter dialog box for coder.HdlConfig and coder.FixPtConfig
has a new layout. The dialog box also has added functionalities, including search, informative tooltips,
and an option for generating equivalent MATLAB script.

You can open the configuration dialog box from the command line interface.

cfg = coder.config('hdl') % or cfg = coder.config('fixpt')
open cfg

Alternatively, you can double-click the configuration object variable in the MATLAB workspace.

R2023a

1-10

For more information, see “Edit Configuration Parameters for HDL Coder” and “Edit Configuration
Parameters for Fixed-Point Code Generation”.

Line buffer interface support for MATLAB to SystemC Workflow
Starting in R2023a, you can use the coder.hdl.interface pragma and the hdl.WorkingSet
class to provide specifications to the line buffer interface and generate working sets from the input
image.

coder.hdl.interface pragma lets you map the input variable to the line buffer interface in
Cadence Stratus HLS. You can specify properties of the line buffer interface as arguments to the
pragma.

hdl.WorkingSet class provides an interface for MATLAB simulation to generate and return working
sets from the input image.

This table shows the usage of coder.hdl.interface and hdl.WorkingSet in the MATLAB design
and MATLAB test bench.

 Code Generation and Verification

1-11

MATLAB Design MATLAB Test Bench
function out = line_buffer_average(in1)
% in1 is the working set of size 3

 coder.hdl.interface(in1, 'Line Buffer', ...
 [20 20], [2 2], 'ConstantFill', 0);
 sum = 0;
 for i = 1:size(in1,1)
 for j = 1:size(in1,2)
 sum = sum + in1(i,j);
 end
 end
 out = sum / numel(in1);

end

image = rand(20, 20);
ws = hdl.WorkingSet(image, [3 3], [2 2], -1);
for x = 1:20
 for y = 1:20
 workingSet = ws.getWorkingSet(x, y);
 out = line_buffer_average(workingSet);
 end
end

R2023a

1-12

Speed and Area Optimizations

Distributed pipelining applies through subsystem hierarchy by default
Starting in R2023a, hierarchical distributed pipelining is now enabled by default as part of the
distributed pipelining optimization. Distributed pipelining can now move delays across hierarchical
boundaries within a subsystem while preserving the subsystem hierarchy. This removes the model
configuration parameter Hierarchical distributed pipelining. As a result, the removed parameter
simplifies applying distributed pipelining to your model by no longer having a separate parameter to
enable hierarchical distributed pipelining after you enable Distributed pipelining for the model. If
you have a top-level device under test (DUT) that contains a subsystem hierarchy, such as lower-level
subsystems, and you want distributed pipelining to run throughout the DUT and the lower-level
subsystems, enable the model configuration parameter Distributed pipelining and leave the HDL
block property DistributedPipelining as inherit for the DUT and all lower-level subsystems.

To prevent distributed pipelining from running in a specific lower-level subsystem in the DUT, set the
HDL block property DistributedPipelining to off for that subsystem.

Distributed pipelining across subsystem hierarchy does not occur between a lower-level subsystem
that is a conditional, shared subsystem, or a model reference and its parent subsystem. If there is
hierarchy inside the lower-level subsystem however, pipelines can be distributed across hierarchical
boundaries inside of the conditional subsystem, shared subsystem, or model reference.

For more information, see “Distributed Pipelining”.

Specify two RAM mapping thresholds to define shape of mapped data
Previously, when mapping delays or persistent array variables to random access memory (RAM) with
the configuration parameter RAM mapping threshold (bits), you could specify only a single integer
to define the RAM mapping threshold.

In R2023a, you can specify two thresholds for the RAM mapping threshold parameter, one for
delay length (for delays) or array size (for persistent array variables) and one for word length or bit
width of the data type. Setting both thresholds excludes mapping delays or persistent arrays that
inefficiently map to block RAM on your target hardware. This setting allows you to selectively map
data that has a shape similar to the specific block RAM configuration on your target hardware. For
more information, see “Apply RAM Mapping to Optimize Area”.

Use delay absorption in feedback loops and conditional subsystems
In R2023a, delay absorption can occur in feedback loops and inside conditional subsystems. Delay
absorption occurs during delay balancing and allows you to use design delays from the original model
in place of pipeline delays introduced from optimizations, which prevents extra delays from being
added to your design.

Delay absorption in feedback loops prevents delay balancing errors caused by extra delays and
enables you to model your design with latency. For example, you can model a feedback loop at the
clock rate with some of amount of latency expressed as design delays to absorb the extra delays
introduced from native floating-point operators or optimizations. For more information, see “Use
Delay Absorption While Modeling with Latency”.

 Speed and Area Optimizations

1-13

Delay absorption can also take place inside conditional subsystems to remove extra delays and
generate a functionally equivalent generated model. You must enable the model parameter Use
trigger signal as clock for delay absorption to take place inside a triggered subsystem.

Unique global scheduling counters for clock-rate pipelining
Previously, the generated model and HDL code of a design contained scheduling logic that had one
scheduling counter per clock-rate pipelining region of the design, even if the design had multiple
regions that required the same size counter, when generating HDL code with these conditions:

• Clock-rate pipelining is enabled for the model
• Streaming or resource sharing is enabled for the model
• The model has an oversampling factor greater than or equal to the streaming or sharing factor

For example, this is a generated model that has two clock-rate pipelining regions formed from two
parallel paths that operate at the same rate in the original model when streaming is enabled. Each
enabled subsystem, crp_temp_streamed and crp_temp_streamed1, acts as clock-rate pipelining
regions and has their own global scheduling counter that counts to 299 for the enable control of the
regions. For more information on scheduling logic, see “Single-Rate Resource Sharing Architecture”.

Starting in R2023a, in order to avoid generating identical counters, HDL Coder generates only one
global scheduling counter per model for all clock-rate pipelining regions that require the same size
counter. For example, this image shows the new generated model. The model contains only one
counter that goes up to 299, which the model uses as the enable control for both enabled subsystems.

R2023a

1-14

This change allows you to reduce area and resource usage previously needed to store multiple
counters of the same size. Additionally, using a single counter instead of multiple counters can
improve the reliability of the design on hardware because it removes the possibility that a glitch
could occur in one counter that causes a misalignment with other counters of the same size.

 Speed and Area Optimizations

1-15

I/O Optimizations
Output statistical characteristics when generating HDL code from
frame-based algorithms
Previously, when you generated code using the frame-to-sample optimization, you could not create a
frame-based algorithm streamed to a sample-based algorithm that outputted statistical
characteristics of the frame-based input. For example, if you applied a histogram equalization
algorithm to a frame-based image, you could output the frame-based histogram-equalized output
image, but not any statistical characteristics of the image, such as the image histogram.

Starting in R2023a, you can output statistical characteristics of a frame-based input when generating
code from frame-based algorithms.

As a result, you can output information from algorithms such as:

• Histogram vectors from a frame-based input
• Minimum or maximum pixel or scalar values of a frame-based input
• The sum or product of the elements of a frame-based input
• An array or scalar input that does not go through the frame-to-sample conversion, but is used in

the algorithm design

For an example, see “Compute Image Characteristics with a Frame-Based Model for HDL Code
Generation”.

Switch between row-major and column-major ordering when
generating code from frame-based algorithms
Previously, when generating HDL code from a frame-based model by using the frame-to-sample
conversion optimization, you could only traverse the input data using row-major ordering, which
traverses the data from left to right and then top to bottom across your matrix. You can now choose
between row-major and column-major ordering by using the new Input processing order property.
For an example, see “Optimize Area Usage For Frame-Based Algorithms with Tall Array Inputs”.

This new option allows you to use the frame-to-sample optimization for many applications that
commonly use column-major ordering, such as digital signal processing and audio applications. For
example, column-major ordering is ideal when processing multi-channel audio signals where each
column is a different channel.

Map large delays to external ports when generating code from a
frame-base algorithm
Frame-based algorithms often need to store large amounts of data during computations for future
processing by using delays needed for pipeline computations performed by the hdl.iteratorfun
and hdl.npufun functions. When using the frame-to-sample conversion optimization, you can now
map large integer delays to input and output device under test (DUT) ports to offload the delays to
external memory outside of your FPGA and save resources on your FPGA that would otherwise be
used to store the delay. When you set the new model configuration parameter Delay size threshold
for external memory to a delay size threshold value in bits, delays greater than this threshold are
moved to external memory.

R2023a

1-16

For information on deploying large delays to external memory for IP core generation, see the
“External memory access when generating an IP core from a frame-based algorithm” on page 1-18
release note.

 I/O Optimizations

1-17

IP Core Generation and Hardware Deployment

External memory access when generating an IP core from a frame-
based algorithm
Frame-based algorithms often need to store large amounts of data during computations for future
processing by using delays for pipeline computations performed by the hdl.iteratorfun and
hdl.npufun functions. Storing delays on an FPGA increases BRAM utilization and a typical FPGA
does not have enough resources to store large delays onboard. In R2023a, when you generate an IP
core and use the frame-to-sample conversion optimization and a delay is above the threshold set by
the Delay size threshold for external memory parameter, this delay is mapped to external
memory. The external memory connects to your IP core through an AXI4 master interface and does
not require modeling the simplified AXI4 master protocol. For an example, see “Offload Large Delays
from Frame-Based Models to External Memory”.

For more information on enabling external memory for large delays, see the “Map large delays to
external ports when generating code from a frame-base algorithm” on page 1-16 release note.

R2023a

1-18

Map matrix ports to AXI4-Stream video interfaces
In R2023a, you can map matrix ports to AXI4-Stream video interfaces by using the frame-to-sample
conversion optimization. Use the frame-to-sample conversion optimization to:

• Prototype programmable vision algorithms in Simulink by using frame-based modeling.
• Test functionality on live video input and output.
• Enable the IP core wrapper to insert a video porch and handle the start-of-frame (SOF) signal.

See “Deploy Frame-Based Models with AXI4-Stream Video Interfaces in Zynq-Based Hardware”.

Generate HDL IP core using generic platform
In prior releases, to generate register transfer logic (RTL) code and intellectual property (IP) core
using HDL Workflow Advisor, you have to setup the third-party synthesis tool, such as Xilinx Vivado,
Intel Quartus, or Microchip Libero SoC, using the hdlsetuptoolpath function. Starting in R2023a,
you can set Target Platform to Generic Platform to generate IP core and RTL code without
setting the third-party synthesis tool. You can set the Target Platform to Generic Platform only
when you set the Target Workflow to IP Core Generation.

To generate RTL code and IP core using the generic platform, open the HDL Workflow Advisor and
follow these steps:

1 In step 1.1 Set Target Device and Synthesis Tool, set Target workflow to IP Core
Generation. Then, set the Target platform to Generic Platform. Synthesis tool and target
device information are not required when you set this target platform.

2 In step 1.2. Set Target Interface, set Target Platform Interfaces for the input and output
ports. You can choose AXI4 as well as external port as the target interface for the ports.

3 Perform all the tasks in the HDL Workflow Advisor until step 3.1. Set HDL Options.
4 In step 3.2. Generate RTL Code and IP Core, run this task to generate RTL code and IP core

for your model. The generated code can be integrated on the hardware.

You can also generate HDL IP cores for generic platforms using the MATLAB command-line interface
(CLI) mode for HDL Workflow Advisor.

For more information, see “Generate Board-Independent HDL IP Core from Simulink Model”.

 IP Core Generation and Hardware Deployment

1-19

Define Custom Board and Reference Design for Microchip Pure FPGA
Platform
The Define Custom Board and Reference Design for Microchip Pure FPGA Platform example
shows how to define and register a custom board and reference design for the Microchip Pure FPGA
platform. This example shows the workflow for the Microchip PolarFire Splash kit in HDL Workflow
Advisor. For more information, see “Define Custom Board and Reference Design for Microchip Pure
FPGA Platforms”.

Set target frequency for Microchip boards in Generic FPGA and ASIC
workflow
HDL Workflow Advisor now enables you to set the target frequency for your Microchip design in the
generic ASIC or FPGA workflow. To set the target frequency for your design in HDL Workflow
Advisor:

1 Set up the Microchip Libero SoC tool path by using the hdlsetuptoolpath function and then
open HDL Workflow Advisor.

2 In step 1.1. Set Target Device and Synthesis Tool, set Target Workflow to Generic ASIC/
FPGA.

3 In step 1.2. Set Target Frequency, set the Target frequency to the required value in MHz.

Complete all the HDL Workflow Advisor tasks to generate the HDL code for your Simulink model and
implement your design on target hardware at the desired target frequency.

Upgrade to Xilinx Vivado 2022.1
HDL Coder now supports Xilinx Vivado 2022.1. HDL Workflow Advisor is tested with Xilinx Vivado
2022.1. You can set up this third-party synthesis tool and start the workflow. HDL Workflow Advisor
generates the list of devices that are supported with that tool.

For more information on supported synthesis tools, see “HDL Language Support and Supported
Third-Party Tools and Hardware”.

Upgrade to Intel Quartus Standard 21.1
HDL Coder now supports Intel Quartus Prime Standard 21.1. HDL Workflow Advisor is tested with
Intel Quartus Prime Standard 21.1. You can set up this third-party synthesis tool and start the
workflow. HDL Workflow Advisor generates the list of devices that are supported with that tool.

For more information on supported synthesis tools, see “HDL Language Support and Supported
Third-Party Tools and Hardware”.

Upgrade to Microchip Libero SoC 2022.1
HDL Coder now supports Microchip Libero SoC 2022.1. HDL Workflow Advisor is tested with
Microchip Libero SoC 2022.1. You can set up this third-party synthesis tool and start the workflow.
HDL Workflow Advisor generates the list of devices that are supported with that tool.

R2023a

1-20

For more information on supported synthesis tools, see “HDL Language Support and Supported
Third-Party Tools and Hardware”.

Support for greater than 32-bit widths and double data types on AXI4
slave interfaces
Starting in R2023a, you can map ports with double data types and bit widths greater than 32 bits to
AXI4 and AXI4-Lite interfaces. See “Map Double Data Types and Data Larger than 32 bits to AXI4-
Slave Interfaces”.

Prototype FPGA designs that access memory using the AXI4 master
interface from MATLAB
In R2023a, when you use MATLAB to prototype your FPGA designs for Xilinx platforms, you can
access memory using the AXI4 master interface. When using a reference design that has an AXI4
master interface connected to your memory, you can generate a host interface script with an
interface to memory from MATLAB. In task 4.3. Program Target Device of HDL Workflow
Advisor, select Generate host interface script. The generated script contains example commands
that show you how to read from and write to memory locations from MATLAB. You can use these
commands to exchange data with the same memory regions accessed by the AXI4 master interface of
the design under test (DUT).

In the HDL Workflow Advisor, when you set task 1.2. Set Target Reference Design to Default
System with External DDR Memory Access, the reference design contains an AXI4 master
interface to external memory. This option is available only for the Xilinx Zynq®-7000 SoC ZC706
board. For an example that uses this reference design, see “Perform Matrix Operation Using External
Memory”. This is an example code snippet from the generated host script file:
%% Write/read memory locations
% Uncomment the following lines to write/read memory locations
% that are also accessible by AXI4 Master interfaces on the generated IP core.
% Update the example addresses with intended memory locations
% Update the example data in the write commands with meaningful data to write to memory

%% AXI4 Master - DDR
dataLen = 100;
readAddress = 0x40000000;
writeAddress = 0x41000000;
writeMemory(hFPGA, writeAddr, zeros([1 dataLen], "uint32"));
readMemory(hFPGA, readAddr, dataLen);

In R2023a, you can use these new fpga object functions to access memory locations that are also
accessible by AXI4 master interfaces on the generated IP core:

• addMemoryInterface — Use this method to create a memory interface on the fpga object that
you can use to access memory locations from MATLAB. See, addMemoryInterface.

• writeMemory — Use this method to write data to the FPGA memory by using MATLAB. See
writeMemory.

• readMemory — Use this method to read data from FPGA memory by using MATLAB. See
readMemory.

To author your own reference designs with memory access capability, specify the memory access
properties for the AXI4 master interface by using the:

 IP Core Generation and Hardware Deployment

1-21

• HasMemoryConnection name-value argument to indicate whether the AXI4 master has a
connection to the memory. See “HasMemoryConnection”.

• ProcessorAccessibleMemoryRegion name-value argument to specify the regions of memory
that are accessible to the processor, such as processing system (PS), programmable logic (PL), or
host computer. See “ProcessorAccessibleMemoryRegion”.

If you are using device tree generation with your reference design, you can also use the
DeviceTreeMemoryRegionNode name-value argument to refer to the name of the corresponding
memory region node in the registered device tree. This code example shows how to author a
reference design with the memory access capability:

hRD.addAXI4MasterInterface(...
 ... % Hardware (FPGA) properties
 'InterfaceID', 'AXI4 Master', ...
 'ReadSupport', true, ...
 'WriteSupport', true, ...
 'MaxDataWidth', 1024, ...
 'AddrWidth', 32, ...
 'DefaultReadBaseAddr', hex2dec('40000000'), ...
 'DefaultWriteBaseAddr', hex2dec('41000000'), ...
 'InterfaceConnection', 'axi_interconnect_1/S01_AXI',...
 'TargetAddressSegments', {{'mig_7series_0/memmap/memaddr',hex2dec('80000000'),...
hex2dec('40000000')}}, ...
 ... % Software (Processor) properties
 'HasMemoryConnection', true, ...
 'ProcessorAccessibleMemoryRegion', [0x80000000, 0x6400000], ...
 'DeviceTreeMemoryRegionNode', "&plmem");

Note You can only create FPGA designs that access memory using the AXI4 master interface when
developing for Xilinx platforms.

Program FPGA from MATLAB using generated host interface script
In R2023a, the generated host interface script includes commands to program your FPGA from
MATLAB. The commands demonstrate how to program your FPGA with the generated bitstream and
corresponding device tree. This code example shows a code snippet from the generated host script
file:
hProcessor = xilinxsoc;
programFPGA(hProcessor,...
 "hdl_prj\vivado_ip_prj\vivado_prj.runs\impl_1\system_top_wrapper.bit",...
"devicetree_axilite.dtb");

Note You can only program FPGAs from MATLAB when generating code for SoC boards and not pure
FPGA boards.

R2023a

1-22

Simscape Hardware-in-the-Loop Workflow

Optimal value of sharing factor for Simscape models
The Simscape™ HDL Workflow Advisor automatically sets an optimal value of the SharingFactor for
the Matrix Multiply (Product) blocks in your HDL implementation model. To enable this functionality,
select the Share adders and multipliers option in Generate implementation model task pane.
The optimal sharing factor value for a model is calculated based on the target details provided in the
Set target and frequency task in the Implementation model generation folder of the Simscape
HDL Workflow Advisor. If you do not specify target hardware, by default the target platform Xilinx
Vivado Kintex®-7 xc7k325t IO334 part is used for calculating the optimal sharing factor. You can
then generate HDL code from the model and run your design at an optimal achievable target
frequency. Automatic setting of sharing factor reduces synthesis overhead and optimizes resource
utilization before generating HDL code for your model. To learn more, see “Generate Implementation
Model”.

Support for Simulink-PS Converter block with input filtering using
Partitioning and Trapezoidal Rule solver
The Simscape hardware-in-the-loop workflow now supports HDL code generation for Simulink-PS
Converter blocks in Simscape models with input filtering using the Partitioning and Trapezoidal Rule
solver. To enable this feature, you must select the Use local solver check box in the Solver
Configuration block settings and set the Solver type parameter to Partitioning or Trapezoidal
Rule. Then, double-click the Simulink-PS Converter block and set the Input signal unit
parameter.

Previously, HDL code generation from Simulink-PS Converter blocks with input filtering was
supported only for the Backward Euler solver.

Specify target hardware settings in Simscape HDL Workflow Advisor
The Simscape hardware-in-the-loop workflow now provides an option to add target hardware
information before the generation of the HDL implementation model. This option helps to incorporate
the HDL optimizations required for the hardware deployment.

To use this option, open Simscape HDL Workflow Advisor for your model and run through the steps
until you reach the State-space conversion folder. Then, under the Implementation model
generation folder, click the Set target and frequency task. This opens the Target Hardware
Settings in the right pane. You can specify the Synthesis Tool, target FPGA part details, and the
Target Frequency (MHz) for generating the HDL implementation model.

 Simscape Hardware-in-the-Loop Workflow

1-23

Once you specify the Target Hardware Settings in the Simscape HDL Workflow Advisor for
generating an HDL implementation model, you can see the same information when you click on the
HDL Code Generation > Target option in the Configuration Parameters dialog box of your
generated model.

Similarly, these hardware specifications are set in the HDL Workflow Advisor window when you open
it from the generated HDL implementation model.

For more information, see “Simscape HDL Workflow Advisor Tasks”.

Enhancements in HDL code generation for tablelookup function
You can generate HDL code for your Simscape model that has a custom block or a Simscape library
block containing the tablelookup function. For the tablelookup function, additional extrapolation
methods are now supported for code generation. The approximation methods supported for code
generation are interpolation = linear and extrapolation = linear, clip, and error.

Previously, only linear extrapolation was supported.

Support for Simscape models containing real-valued modes
The Simscape hardware-in-the-loop workflow now supports HDL code generation for Simscape
models that have real-valued modes.

For HDL code generation, double-click the Solver Configuration block in the model, select the Use
local solver check box, and then set the Solver type parameter to Partitioning.

Previously, only integer mode was supported.

Support for Trapezoidal Rule solver
The Simscape hardware-in-the-loop workflow now supports HDL code generation for your Simscape
models with Trapezoidal Rule solver. With the local solver set to Trapezoidal Rule, you can simulate
your models for a larger time step and with increased accuracy. The Trapezoidal Rule local solver can
capture oscillations more accurately at larger time steps but is less stable than Backward Euler
solver.

R2023a

1-24

To use the Trapezoidal Rule, on the Solver Configuration block, select the Use local solver check box
and set the Solver type parameter to Trapezoidal Rule, then run the Simscape HDL Workflow
Advisor.

For details on how to generate HDL code and deploy onto the hardware, see “Generate HDL Code for
Simscape Models by Using Trapezoidal Rule Solver”.

To learn more, see Release Notes for Simscape (Simscape).

Support for real-valued event variables
The Simscape hardware-in-the-loop workflow now supports HDL code generation from the Simscape
models with blocks containing real-valued event variables. For more information, see events.

 Simscape Hardware-in-the-Loop Workflow

1-25

R2022b

Version: 4.0

New Features

Bug Fixes

Compatibility Considerations

2

Model and Architecture Design

Max number of I/O pins for FPGA deployment
In R2022b, you can specify the maximum number of I/O pins for your target FPGA. If the DUT pin
count in the generated code exceeds the maximum number of I/O pins set by this parameter, HDL
Coder generates a warning. This warning is generated in the HDL Conformance Report if you are
generating HDL code from MATLAB or in the HDL Code Generation Check Report if you are
generating HDL code from Simulink. Review the Resource Report for the actual I/O pin count from
the DUT, labeled as I/O Bits in the Resource Report Summary. For more information, see Max number
of I/O pins for FPGA deployment.

Generate record types for bus
You can now generate code with VHDL® construct record types for bus signals at design under test
(DUT) interface and different subsystem-level interfaces. Record types are supported only for the
VHDL target language. When you enable this option during code generation, HDL Coder creates a
record type for the bus signals, which can be used in entity declaration and signal declaration in your
generated VHDL code. Generating record types for a bus improves code readability, reduces code
size, and enables you to easily maintain a large number of signals at the entity and block levels.

HDL code generation supports records types for:

• Bus signals at DUT interfaces, BlackBox interfaces and controlled subsystems interfaces
• Nested bus signals
• Bus signals that have different data types

The configuration parameter Generate Record Types for Bus is now available in the HDL Code
Generation > Global Settings > Coding style tab.

You can also enable this option in the MATLAB command window by using hdlset_param and
makehdl functions. For example, generate a record type for a bus signal in the myModel model.

hdlset_param ("myModel",GenerateRecordType="on");

For more information, see Generate VHDL Code with Record Types for Bus Signals.

Improved 3-D array code generation
You can now generate HDL code for the Simulink blocks that support 3-D arrays with fixed-point and
floating-point data types as input. You can use this functionality in a design under test (DUT) interface
and model reference. You can also generate a test bench for a model that has 3-D arrays as inputs.

This figure shows an HDL code snippet for the Add block with an input of size [2-by-2-by-2].

R2022b

2-2

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/using-trigger-signals-and-scalarization-and-test-point-dut-port-generation-parameters.html#mw_41710dfb-5743-4c74-9968-fe9594911deb
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/using-trigger-signals-and-scalarization-and-test-point-dut-port-generation-parameters.html#mw_41710dfb-5743-4c74-9968-fe9594911deb
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/rtl-style.html#mw_300e0de8-1460-4c4c-b16d-925ce002bf78
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/makehdl.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/generate-VHDL-code-with-record-types-for-bus.html

These blocks support this functionality:

Simulink Blocks

Add Product (element-
wise)

Selector Reshape Gain

Concatenate Multiport Switch Switch Complex to Real-
Imag

Real-Imag to
Complex

Integer Delay Unary Minus Rate Transition Relational
Operator

Constant

Abs Logical Operator Data Type
Conversion

Trigonometric
Function

Math Function

Sqrt Decrement Real
World

Decrement Stored
Integer

Decrement To Zero Increment Real
World

Increment Stored
Integer

Bit Shift Bit Slice Bit Rotate Bit Reduce

Bit Set Extract Bits Saturation
Dynamic

Dead Zone
Dynamic

HDL Coder in Simulink Online
HDL Coder is now available in Simulink Online. You can use these HDL Coder features in Simulink
Online:

• Generate HDL code for a Simulink model.
• Generate HDL test bench for a design under test (DUT).
• Perform various HDL optimizations on your Simulink design, such as distributed pipelining, clock

rate pipelining, streaming, sharing, and critical path estimation.
• Generate reports, such as a code generation report, a traceability report, a optimization report.
• Run Model Advisor Checks on your Simulink design.

Limitations

 Model and Architecture Design

2-3

https://www.mathworks.com/help/releases/R2022b/simulink/slref/add.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/product.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/product.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/selector.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/reshape.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/gain.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/vectorconcatenate.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/multiportswitch.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/switch.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/complextorealimag.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/complextorealimag.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/realimagtocomplex.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/realimagtocomplex.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/variableintegerdelay.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/unaryminus.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/ratetransition.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/relationaloperator.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/relationaloperator.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/constant.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/abs.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/logicaloperator.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/datatypeconversion.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/datatypeconversion.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/trigonometricfunction.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/trigonometricfunction.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/mathfunction.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/sqrt.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/decrementrealworld.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/decrementrealworld.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/decrementstoredinteger.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/decrementstoredinteger.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/decrementtozero.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/incrementrealworld.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/incrementrealworld.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/incrementstoredinteger.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/incrementstoredinteger.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/bitshift.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/bitslice.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/bitrotate.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/bitreduce.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/bitset.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/extractbits.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/saturationdynamic.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/saturationdynamic.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/deadzonedynamic.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/deadzonedynamic.html

• MATLAB to HDL workflow is not supported in Simulink Online.
• You cannot use HDL Workflow advisor in Simulink Online.
• You cannot set up third-party tools in Simulink Online.

To use Simulink Online, go to Simulink Online.

R2022b

2-4

https://www.mathworks.com/products/simulink-online.html

Block Enhancements

Enable clock-driven outputs for Moore Stateflow charts
In R2022b, you can enable clock-driven outputs for Stateflow® charts by using the HDL block
property ClockDrivenOutput. Clock-driven outputs prevent combinatorial logic from driving the
output and allow an immediate output update when the clock signal and state change. This option is
available only for Moore charts. For more information, see Enable Clock-Driven Outputs of Stateflow
Charts (Moore Charts Only).

Model Clock and Reset signal using triggered and resettable
subsystem
In R2022b, HDL Coder has improved clock and reset signal generation functionality for Triggered
and Resettable subsystems. Using these improvements, you can use trigger as clock functionality to
model trigger port from Triggered Subsystem as a clock and use Resettable Subsystem to model
reset port from Simulink. The enhancements are listed below:

• You can now use a Triggered Subsystem with synchronous semantics, which are more compatible
with hardware. You can include a Resettable Subsystem inside the Triggered Subsystem to model
a clock and reset signal from Simulink.

• You can now generate a code with a single clock and reset for a nested Resettable Subsystem
inside a Triggered Subsystem by Use trigger signal as a clock and Minimize global reset
functionality.

• You can also generate code that has multiple clock and reset signals for a model consisting of
multiple Triggered and Resettable subsystem.

• You can use Unit Delay Enabled Synchronous block inside the Triggered Subsystem. You can
model a Unit Delay Resettable Synchronous block in the Triggered Subsystem by adding the Unit
Delay block to a Resettable Subsystem with synchronous semantics and placing the Resettable
Subsystem inside Triggered Subsystem.

• You can use synchronous delay blocks such as the Unit Delay Enabled Synchronous, Unit Delay
Resettable Synchronous, and Unit Delay Enabled Resettable Synchronous blocks, inside a
Resettable Subsystem.

For more information, see Using Triggered Subsystems for HDL Code Generation.

Half and double data type support for Simulink blocks
You can now use these blocks with half-precision or double-precision data types when you generate
HDL code in native floating point mode.

Supported blocks with half-precision data type

• Bus to Vector
• Dot Product
• Logical Operator

 Block Enhancements

2-5

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/guidelines-for-hdl-code-generation-using-stateflow-charts.html#mw_843c20ad-3cde-4ce6-817d-b4bc69fae56a
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/guidelines-for-hdl-code-generation-using-stateflow-charts.html#mw_843c20ad-3cde-4ce6-817d-b4bc69fae56a
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/use-trigger-as-clock-in-triggered-subsystems.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/bustovector.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/dotproduct.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/logicaloperator.html

• Multiply-Add
• Signal Conversion
• Probe
• Terminator

Supported blocks with double-precision data type

• Logical Operator
• Multiply-Add
• Probe

For more information, see Simulink Blocks Supported by Using Native Floating Point.

Reciprocal square root block in HDL Math Library
The rSqrt block is available in the HDL Math Library. To use this block in your model, open HDL math
library by using this command.

open_system('HDLMathLib')

You can simulate the rSqrt block with latency. The latency of this block depends on the number of
iterations and architecture that you use. This table shows the block architecture options.

Reciprocal Sqrt Architectures

Architecture Latency
RecipSqrtNewton Number of Iterations + 2
RecipSqrtNewtonSingleRate (Number of Iterations x 4) + 5

This figure shows the simulation results for an rSqrt block with the RecipSqrtNewton architecture
and three iterations. The output of the block changes at 5 s, which is equal to latency of the block.

R2022b

2-6

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/multiplyadd.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/signalconversion.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/probe.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/terminator.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/logicaloperator.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/multiplyadd.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/probe.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html

For more information, see Implement Control Signals-Based Mathematical Functions by Using HDL
Coder.

Support for nonzero initial values of output ports in controlled
subsystems
HDL code generation now supports nonzero initial values of output ports in these controlled
subsystems.

• Enabled Subsystem
• Triggered Subsystem
• Switch Case Action Subsystem
• If Action Subsystem

Using this enhancements, you can include the blocks inside the controlled subsystem that requires
nonzero initial values at output ports. You can specify the nonzero Initial Output value for a single
output port or multiple output ports in the subsystem and generate HDL code. Code generation also
supports nonzero vector values at Initial Output block parameter for output ports.

Generate HDL code with all Variant Choices from Variant Subsystem
Starting in R2022b, you can generate HDL code that contains both active and inactive choices of a
Variant Subsystem block. In the generated HDL code, the variant control variable is a tunable port.
You can set the active choice by providing the value of the variant control variable at the model

 Block Enhancements

2-7

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/implement-control-signals-based-functions-using-hdl-coder.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/implement-control-signals-based-functions-using-hdl-coder.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/enabledsubsystem.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/triggeredsubsystem.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/switchcaseactionsubsystem.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/ifactionsubsystem.html

startup. For more information, see Variant Subsystem: Using Variant Subsystems for HDL Code
Generation.

R2022b

2-8

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/guidelines-for-usage-of-different-subsystem-types.html#mw_7a054c81-229d-4653-8bfc-3069e8657c57
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/guidelines-for-usage-of-different-subsystem-types.html#mw_7a054c81-229d-4653-8bfc-3069e8657c57

Code Generation and Verification

Highlight dead blocks removed in generated code
In R2022b, you can use the new Highlight dead blocks removed in generated code parameter to
generate a MATLAB script during HDL code generation to highlight the unused blocks in your model
that are removed from the generated code. For more information, see Highlight dead blocks removed
in generated code.

Improved generated HDL code for enumerated data used in a
Stateflow chart
In R2022b, you can now specify the enumeration type used to monitor state activity for a Stateflow
chart that contains only literals that correspond to every state, without an extra literal for specifying
the None state. The default value of the enumeration type can correspond to one of the states in the
chart. By having an enumeration type that specifies only as many literals as there are states in the
Stateflow chart, you can generate HDL code that requires less area. For more information, see
Enumeration type for active state monitoring in a Stateflow chart with no default value.

Cosimulation workflow support for Vivado simulator
When you perform HDL cosimulation, you now have the option to select Vivado simulator to
cosimulate the generated HDL.

You can use this feature with Simulink or MATLAB in these scenarios:

• When using the makehdltb function to generate a test bench, set the GenerateCosimModel
property to Vivado Simulator. For example:
makehdltb('hdl_cosim_demo1/MAC',targetlang="vhdl",GenerateCosimModel="Vivado Simulator")

• When using the Simulink HDL Workflow Advisor, open the configuration parameters for your
model, and on the left pane, expand HDL Code Generation and select Test Bench. Then set
Simulation tool to Xilinx Vivado Simulator.

• When using MATLAB HDL Coder app, in the Verify with Cosimulation step, set the
Cosimulate for use with parameter to Xilinx Vivado Simulator.

This feature requires an HDL Verifier™ license.

Support for any order of enumerated types in Stateflow charts
In prior releases, when you defined the enumerated types for states in Stateflow charts, you can
generate HDL code only for enumerated types defined in monotonically increasing order. HDL Coder
now supports any ordering of enumerated types in Stateflow charts. You can use this functionality for
the Verilog® target language in Mealy and Moore state machines.

 Code Generation and Verification

2-9

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/diagnostics-for-optimizations.html#mw_c1e16050-f73d-4f79-9163-1f978e4463ae
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/diagnostics-for-optimizations.html#mw_c1e16050-f73d-4f79-9163-1f978e4463ae
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/guidelines-for-hdl-code-generation-using-stateflow-charts.html#mw_3a4ce88c-eec6-42f0-b2fe-df2e6b9efeff
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/makehdltb.html

R2022b

2-10

Speed and Area Optimizations

HDL code generation from frame-based algorithms
Generate synthesizable HDL code from frame-based algorithms that was previously not synthesizable
due to the large amount of I/O required by using the new frame-to-sample conversion optimization.
The frame-to-sample optimization converts matrix inputs to smaller-sized samples in the generated
HDL code to reduce the FPGA I/O needed to handle large input and output signals. You can use the
frame-to-sample conversion to optimize designs for hardware for various use cases in domains that
have large inputs, such as image processing, digital signal processing, radar applications, and audio
processing. For more information, see HDL Code Generation from Frame-Based Algorithms.

MATLAB-to-HDL optimization improvements
In R2022b, these optimizations are supported for HDL Coder in the MATLAB-to-HDL workflow:

• Clock-rate pipelining
• Native floating-point mode
• Frame-to-sample conversion optimization

You can apply each optimization and its related parameters to your MATLAB function by using the
MATLAB HDL Workflow Advisor or by setting the corresponding coder.HdlConfig object property.

To enable native floating-point mode or frame-to-sample conversion for your design, first enable the
Aggressive Dataflow Conversion parameter in the Optimizations tab of the HDL Code
Generation task in the MATLAB HDL Workflow Advisor.

The Aggressive Dataflow Conversion parameter transforms the control flow algorithm of the
MATLAB code inside the MATLAB function to a dataflow representation and can apply these new
supported optimizations to your design. If you have a Simulink license, when you enable Aggressive
Dataflow Conversion, you can use the Generate Simulink Model parameter in the Advanced tab
of the HDL Code Generation task in the MATLAB HDL Workflow Advisor to generate a functionally
equivalent Simulink model of your MATLAB function design. For an example, see Optimize Feedback
Loop Design and Maintain High Data Precision for HDL Code Generation.

You can also apply clock-rate pipelining with or without Aggressive Dataflow Conversion. Clock-
rate pipelining applied to a design with Aggressive Dataflow Conversion enabled can handle
latency added in feedback loops that use persistent variables.

Simplified distributed pipelining workflow for DUT with subsystem
hierarchy
In R2022b, the default setting for the subsystem HDL block property DistributedPipelining is
Inherit instead of Off. As a result, you can enable or disable distributed pipelining for your entire
HDL design by using the new global option Distributed pipelining. You can use this property to
enable distributed pipelining for an entire device under test (DUT) with a single option. For example,
if your DUT subsystem has subsystem hierarchy, meaning it contains lower-level subsystems, you can
set the model parameter Distributed pipelining to on and enable the model parameter
Hierarchical distributed pipelining to have distributed pipelining run through the entire DUT,
including in lower-level subsystems, without needing to enable DistributedPipelining for the DUT

 Speed and Area Optimizations

2-11

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/frame-to-sample-or-pixel-conversion-to-target-stream-based-hardware.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/optimize-feedback-loop-design-and-maintain-high-data-precision-for-hdl-code-generation.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/optimize-feedback-loop-design-and-maintain-high-data-precision-for-hdl-code-generation.html

and each subsystem inside the DUT. You can still specifically enable or disable distributed pipelining
for a lower-level subsystem if you set the HDL block property DistributedPipelining to On or Off
for the subsystem. For more information, see Distributed Pipelining.

Required oversampling factor reported in clock-rate pipelining error
messages
An error or warning message now appears in the HDL Code Generation Check Report with
suggestions for setting the Oversampling factor property if you have a latency budget issue
caused by clock-rate pipelining in a feedback loop in your design. For clock-rate pipelining in a
feedback loop that is over-budget in latency:

• A warning message displays the amount of latency that exceeds the budget in clock cycles for the
feedback loop that caused the issue.

• A delay balancing error message suggests an optimal Oversampling factor setting for the entire
model.

For clock-rate pipelining in a feedback loop that is under budget in latency, meaning that not all of
the extra clock cycles allocated by the Oversampling factor property are used, a message in the
HDL Code Generation Check Report suggests how to use the extra clock cycles or reduce the extra
clock cycles and unused latency budget by decreasing the Oversampling factor property to an
optimal value.

Reduce matching delays for stable inputs and test point outputs
Stable paths are paths where the initial inputs to the path are constant or not changing. In R2022b,
you can disable delay balancing to prevent HDL Coder from inserting matching delays into stable
paths for:

• Input ports in your device under test (DUT) subsystem with a stable input signal outside of the
DUT by disabling the HDL block property BalanceDelays on the DUT-level Inport block. For more
information, see Disable Delay Balancing for Constant Sources.

• Input ports generated for tunable parameters by disabling the model parameter Balance delays
for generated DUT input ports after selecting the Enable HDL DUT input port generation
for tunable parameters model parameter in the Configuration Parameters dialog box. For more
information, see Balance delays for generated DUT input ports.

Preventing matching delays on constant paths in the DUT reduces the amount of resources needed
for your design.

You can also disable delay balancing and prevent matching delays inserted on the path to output
ports generated for test points by:

• Treating a manually added output port as a test point and disabling the HDL block property
BalanceDelays on the DUT-level Outport block.

• Automatically creating an output port from a test point in your generated model by using the
model parameter Enable HDL DUT output port generation for test points and disabling the
model parameter Balance delays for generated DUT output ports in the Configuration
Parameters dialog box. For more information, see Balance delays for generated DUT output ports.

R2022b

2-12

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/distributed-pipelining.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/oversampling-factor.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/delay-balancing.html#mw_09c23113-88f9-4620-8c59-376ebf27a9fc
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/using-trigger-signals-and-scalarization-and-test-point-dut-port-generation-parameters.html#mw_2d0dfcb1-ea71-4881-a2d6-f72499080ca7
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/using-trigger-signals-and-scalarization-and-test-point-dut-port-generation-parameters.html#mw_1ebf437b-4600-4d02-8ba8-46b56df8ddf5

Enhanced delay absorption
There is now an enhanced delay absorption optimization that occurs during delay balancing of the
model to absorb design delays more efficiently than in previous releases. Previously, delay absorption
could only occur if a design delay was directly adjacent to an operator that required delays. In
R2022b, delay absorption can absorb design delays separated by any component that does not take
zero input and output a non-zero value, such as a NOT Logical Operator block. For example, before
R2022b, this model produced this generated model and synthesis resource summary using the Xilinx
Vivado synthesis tool:

In R2022b, the same model produces this generated model with the design delay absorbed into the
delays needed for the NFP relop block and a synthesis resource summary that shows a reduction in
registers used:

 Speed and Area Optimizations

2-13

For more information on delay absorption, see Latency Considerations with Native Floating Point.

Clock-rate pipelining support for rate transition blocks in multi-rate
designs
Clock-rate pipelining no longer treats Rate Transition, Downsample, or Repeat blocks as clock-rate
pipelining barriers. As a result, clock-rate pipelining optimizes multi-rate designs more effectively by
reducing the large amount of latency and unbalanced delays that could have previously occurred as a
result of these rate transition blocks acting as clock-rate pipelining barriers. For example, in previous
releases, a multi-rate design with feedback loops might generate delay balancing errors when clock-
rate pipelining was enabled. In R2022b, these designs do not generate delay balancing errors.

Synchronize clock-rate pipelining of output ports with a valid signal
interface
In R2022b, you can use the new optimization parameter Balance clock-rate pipelined DUT output
ports when Allow clock-rate pipelining of DUT output ports is enabled. The Allow clock-rate
pipelining of DUT output ports parameter allows outputs to be ready as soon as possible, even if
one output is ready before another. To synchronize the outputs while still satisfying the highest-
latency requirements of the outputs, you can enable the Balance clock-rate pipelined DUT output
ports parameter. For more information, see Balance clock-rate pipelined DUT output
ports and Clock-Rate Pipelining for DUT Output Ports.

Enhancements in Multicycle Path (MCP) constraints generation
In prior releases, you could generate the MCP constraints only between registers whose clock
enables are driven by the phase_0 clock enable signal. For example, consider a multirate model that
has Discrete FIR filter. When you select enable-based constraints in the model, the timing controller
logic generates three enable phase registers: phase_0, phase_1, and phase1_1. However, the MCP
constraints are generated only for the phase_0 register. Because you could not generate the MCP
constraints for all the phase registers, the FPGA synthesis tool could not provide accurate setup and
hold requirements for the combinational path. For more information on MCP constraints, see Meet
Timing Requirements Using Enable-Based Multicycle Path Constraints.

You can now generate MCP constraints for all the phase registers, including registers that operate at
different rates. This figure shows the generation of the MCP constraints are derived for all the phase
registers in a multirate model.

R2022b

2-14

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/latency-considerations-with-native-floating-point.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/pipelining-parameters.html#mw_d17f9c41-c187-4646-a0e4-1ded3b98345a
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/pipelining-parameters.html#mw_d17f9c41-c187-4646-a0e4-1ded3b98345a
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/clock-rate-pipelining.html#bu0rktm-1
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/enable-based-multicycle-constraints.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/enable-based-multicycle-constraints.html

You can use this functionality for the VHDL and Verilog target language. This support is available only
for the Xilinx Vivado synthesis tool.

Use enable-based constraints to generate the MCP constraints for a multirate model. Synthesis tools,
such as Xilinx Vivado, use MCP constraints to relax the setup and hold timing on multicycle paths in
your design. HDL Coder generates a set of enable signals that drive the clock enables of the registers
operating at different rates and different phases. The MCP constraints should be generated for all the
different phases and rate. For an example, see Use Multicycle Path Constraints to Meet Timing for
Slow Paths.

Optimize generated SystemC code by using pragmas in MATLAB code
In R2022b, you can use these pragmas in your MATLAB code to specify additional optimizations that
can improve the speed and area of the generated SystemC™ code.

• coder.hdl.stable lets you to define stable inputs in your MATLAB code. It helps in hardware
area optimization as the stable inputs are not stored in registers.

• coder.hdl.loospec(‘pipeline’) lets you specify the for-loops to be pipelined in the
generated SystemC code. Pipelining of for-loops enables effective utilization of hardware
resources by resource sharing, thus improving the throughput of the design. For more
information, see coder.hdl.loopspec.

 Speed and Area Optimizations

2-15

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/multicycle-path-constraints.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/multicycle-path-constraints.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/coder.hdl.stable.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/coder.hdl.loopspec.html

• coder.hdl.arraydistance enables you to specify the minimum and maximum distance
between memory read and memory write inside a pipelined for-loop. This ensures safety in
pipeline scheduling of for-loops.

The below table shows how to use these pragmas in the MATLAB code and its equivalent generated
SystemC code.

MATLAB Code Generated SystemC Code
function out = f(in1, in2)

 persistent arr1;
 if isempty(arr1)
 arr1 = int8(zeros(1,100));
 end

 coder.hdl.stable('in2');

 coder.hdl.loopspec('pipeline',1);
 for i = 4:100
 coder.hdl.arraydistance('arr1', 'min',1);
 coder.hdl.arraydistance('arr1', 'max',2);
 y = arr1(i-3) + in2;
 arr1(i) = in1;
 end
 out = y;
end

class fClass
{
 public:
 int8_T f_arr1[100];
 void f_initialize_ram_vars()
 {
 int32_T t_0;
 L1:
 for (t_0 = 0; t_0 < 100; t_0 = t_0 + 1) {
 f_arr1[t_0] = 0;
 }
 }

 int8_T f(int8_T in1, int8_T in2)
 {
 int8_T out;
 L2:
 for (int32_T i = 0; i < 97; i = i + 1) {
 HLS_PIPELINE_LOOP(HARD_STALL, 1, "L2");
 HLS_CONSTRAIN_ARRAY_MIN_DISTANCE(f_arr1,1);
 HLS_CONSTRAIN_ARRAY_MAX_DISTANCE(f_arr1,2);
 out = (sc_fixed<8,8,SC_TRN,SC_SAT>)((sc_int<9>)f_arr1[i] + (sc_int<9>)in2);
 f_arr1[i + 3] = in1;
 }

 return out;
 }
};

For more information on pipelining of for-loops during SystemC code generation, see Pipelining of
for-Loops.

R2022b

2-16

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/coder.hdl.arraydistance.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/systemc-pipelining-of-for-loops.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/systemc-pipelining-of-for-loops.html

IP Core Generation and Hardware Deployment

Map complex vector, matrix, and complex matrix ports to AXI4-Stream
interfaces
In R2022b, you can map vectors and matrices ports to AXI4-Stream interfaces by using the frame-to-
sample conversion optimization. When you use this optimization, HDL Coder creates the necessary
logic for handling the streamed data into your frame-based designs. Use this optimization to
eliminate the need for extra-modeling steps, such as adding serializer and deserializer blocks to your
model. You can map these data types to AXI4-Stream interfaces:

• Vector
• Complex vector
• Matrix
• Complex matrix

Do not enable the frame-to-sample conversion if you want to model the control signals of the AXI4-
Stream interface as you have access to only the data port. When you enable the frame-to-sample
conversion, HDL Coder generates and maps the Valid, Ready, and TLAST control signals. See Deploy
a Frame-Based Model with AXI4-Stream Interfaces.

Mixed HDL languages for black box subsystem in IP Core Generation
workflow
Previously in R2022a, when you used black box subsystem in the IP core generation workflow that
consists of HDL source files of different languages, the support for adding source files were limited to
the files that have language same as the code generation target language. HDL Coder did not allow
you to add source file of language other than the target language in the IP Core Generation workflow.

You can now add source files that have a language other than the target language to a black box
subsystem when you generate an IP core. With this enhancement, you can integrate third-party IPs
that are written in different languages into your model. This support is available for these third-party
tools:

• Xilinx Vivado
• Intel Quartus Pro
• Intel Quartus Prime Standard
• Microchip Libero SoC

You can add the HDL source file to the IP core generation by using a graphical user interface (GUI) or
the MATLAB Command Window. For more information, see Generate RTL Code and IP Core.

Generate Board-Independent HDL IP Core for Microchip Platform
The Generate Board-Independent HDL IP Core for Microchip Platform example shows how to
generate an HDL IP core for the generic Microchip platform. The example also shows how to
integrate the IP core it into Microchip target platform of your choice. See, Generate Board-
Independent HDL IP Core for Microchip Platforms.

 IP Core Generation and Hardware Deployment

2-17

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/deploy-a-frame-based-model-with-AXI4-Stream-interfaces.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/deploy-a-frame-based-model-with-AXI4-Stream-interfaces.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/hdl-workflow-advisor-tasks.html#btt6dyv-1
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/generate-board-independent-HDL-IP-core-for-microchip.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/generate-board-independent-HDL-IP-core-for-microchip.html

Upgrade to Intel Quartus Prime Pro 21.3
HDL Coder has been tested with Intel Quartus Prime Pro 21.3. For more information, see HDL
Language Support and Supported Third-Party Tools and Hardware.

Upgrade to Cadence Stratus HLS 21.2
HDL Coder now supports Cadence® Stratus HLS 21.2 for SystemC code generation. HDL Workflow
Advisor is tested with Cadence Stratus HLS 21.2. You can set up this third-party synthesis tool and
start the workflow. HDL Workflow Advisor generates the list of devices that are supported with that
tool.

For more information on supported synthesis tools, see “HDL Language Support and Supported
Third-Party Tools and Hardware”.

Support DSP58 architecture for Xilinx Versal Devices
You can now generate HDL code for the DSP58 architecture of Xilinx Versal Devices.

AXI manager in HDL Workflow Advisor supports Ethernet connection
for Xilinx boards
You can now access on-board memory locations in your FPGA design over an Ethernet connection for
Xilinx boards by using the HDL Workflow Advisor tool. This feature provides faster performance
than the AXI manager over a JTAG connection, which previous releases of the software support.

You can now automatically add the UDP AXI Manager IP into your FPGA design and connect the
added IP to the DUT IP by setting the Insert AXI Manager (HDL Verifier required) parameter to
Ethernet in the HDL Workflow Advisor tool. The UDP AXI Manager IP connects to subordinate
memory locations on the board using the AXI4 or AXI4-Lite interface. The IP also responds to the
read and write commands from MATLAB or Simulink.

To automatically add and connect the UDP AXI Manager IP to your FPGA design, follow these steps in
the HDL Workflow Advisor tool.

1 In 1.1. Set Target Device and Synthesis Tool, set Target workflow to IP Core
Generation.

2 In 1.2. Set Target Reference Design, set Reference design to Default System and Insert
AXI Manager (HDL Verifier required) to Ethernet. Set the IP address of your target board
using Board IP Address.

Note By default, the Ethernet option is available for only the Artix®-7 35T Arty, Kintex-7
KC705, and Virtex®-7 VC707 boards. To enable this option for other boards that have the
Ethernet physical layer (PHY), manually add the Ethernet media access controller (MAC) Hub in
the plugin_board file using the addEthernetMACInterface method before you launch the
HDL Workflow Advisor tool.

R2022b

2-18

https://www.mathworks.com/help/releases/R2022b/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/hdlcoder.board.addethernetmacinterface.html

3 In 1.3. Set Target Interface, map each DUT signal that you want to access to the AXI4 or
AXI4-Lite interface.

To use this feature, you must install the HDL Verifier Support Package for Xilinx FPGA Boards. To
access supported hardware for HDL Verifier software, see HDL Verifier Supported Hardware (HDL
Verifier).

FPGA data capture in HDL Workflow Advisor supports Ethernet
connection for Xilinx boards
You can now capture a window of signal data from the FPGA and return the data to MATLAB or
Simulink over an Ethernet connection for Xilinx boards by using the HDL Workflow Advisor tool.
This feature provides faster performance than the FPGA data capture over a JTAG connection, which
previous releases of the software support.

To automatically add and connect the data capture IP to your FPGA design for an Ethernet
connection, follow these steps in the HDL Workflow Advisor tool.

1 In 1.1. Set Target Device and Synthesis Tool, set Target workflow to IP Core
Generation.

2 In 1.2. Set Target Reference Design, set Reference design to Default System and FPGA
Data Capture (HDL Verifier required) to Ethernet. Set the IP address of your target board
using Board IP Address.

Note By default, the Ethernet option is available for only the Artix-7 35T Arty and Kintex-7
KC705 boards. To enable this option for other boards that have the Ethernet physical layer

 IP Core Generation and Hardware Deployment

2-19

https://www.mathworks.com/help/releases/R2022b/hdlverifier/supported-hardware.html

(PHY), manually add the Ethernet media access controller (MAC) Hub in the plugin_board file
using the addEthernetMACInterface method before you launch the HDL Workflow Advisor
tool.

3 In 1.3. Set Target Interface, map each DUT signal that you want to capture to the FPGA Data
Capture interface.

For more information, see Data Capture Workflow (HDL Verifier Support Package for Xilinx FPGA
Boards).

To use this feature, you must install the HDL Verifier Support Package for Xilinx FPGA Boards. To
access supported hardware for HDL Verifier software, see HDL Verifier Supported Hardware (HDL
Verifier).

FPGA data capture in HDL Workflow Advisor supports capture
condition logic
FPGA data capture in the HDL Workflow Advisor now supports the capture condition logic. Include
the capture condition logic in the HDL IP core to use a capture condition to control which data to
capture from the FPGA. The HDL IP core evaluates the capture condition at each clock cycle and
captures only the data that satisfies the capture condition. For more information on capture
conditions, see Capture Conditions (HDL Verifier Support Package for Xilinx FPGA Boards).

To include the capture condition logic in the HDL IP core, select the Include capture condition
logic in FPGA Data Capture parameter in the Generate RTL Code and IP Core task while
generating the IP core using the HDL Workflow Advisor tool.

R2022b

2-20

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/hdlcoder.board.addethernetmacinterface.html
https://www.mathworks.com/help/releases/R2022b/supportpkg/xilinxfpgaboards/ug/data-capture-workflow.html
https://www.mathworks.com/help/releases/R2022b/hdlverifier/supported-hardware.html
https://www.mathworks.com/help/releases/R2022b/supportpkg/xilinxfpgaboards/ug/capture-conditions.html

Then, set up a capture condition in the FPGA Data Capture tool, the
hdlverifier.FPGADataReader System object™, or the FPGA Data Reader block.

For more information, see Data Capture Workflow (HDL Verifier Support Package for Xilinx FPGA
Boards).

To use this feature, you must install the HDL Verifier Support Package for Xilinx FPGA Boards or HDL
Verifier Support Package for Intel FPGA Boards. To access supported hardware for HDL Verifier
software, see HDL Verifier Supported Hardware (HDL Verifier).

Define Custom Board and Reference Design for Microchip Platform
The Define Custom Board and Reference Design for Microchip Platform example shows how to
define and register a custom board and reference design for Microchip Platform. This example shows
workflow to define custom board and reference design for Microchip SmartFusion2 development
board in HDL Workflow Advisor. See Define Custom Board and Reference Design for Microchip
Workflow.

Functionality being removed or changed
Microsemi Libero SoC renamed to Microchip Libero SoC
Behavior change

The synthesis tool name Microsemi Libero SoC has been changed to Microchip Libero SoC.
You can see the new synthesis tool name in the HDL Workflow Advisor and configuration parameter
settings. You can also set up the synthesis tool name Microchip Libero SoC by using HDL Coder
functions.

 IP Core Generation and Hardware Deployment

2-21

https://www.mathworks.com/help/releases/R2022b/supportpkg/xilinxfpgaboards/ug/data-capture-workflow.html
https://www.mathworks.com/help/releases/R2022b/hdlverifier/supported-hardware.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/define-custom-board-and-reference-design-for-microchip.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/define-custom-board-and-reference-design-for-microchip.html

Insert JTAG AXI Manager renamed to Insert AXI Manager
Behavior change

When you generate an IP core with the HDL Workflow Advisor, the Insert JTAG AXI Manager (HDL
Verifier required) parameter has been renamed to Insert AXI Manager (HDL Verifier required).
Set this parameter to one of these options.

• off — Disable insertion of the AXI manager IP.
• JTAG — Enable AXI manager IP insertion for the JTAG connection. This option inserts the AXI

Manager IP into your reference design.
• Ethernet — Enable AXI manager IP insertion for the Ethernet connection. This option inserts the

UDP AXI Manager IP into your reference design.

FPGA Data Capture - JTAG renamed to FPGA Data Capture
Behavior change

When you generate an IP core with the HDL Workflow Advisor, the FPGA Data Capture - JTAG
target platform interface has been renamed to FPGA Data Capture. Use this interface to capture
test point signals and signals at the DUT output ports while your design runs on the FPGA. This
interface captures data over a JTAG connection when you set FPGA Data Capture (HDL Verifier
required) to JTAG in the Set Target Reference Design task. This interface captures data over an
Ethernet connection when you set FPGA Data Capture (HDL Verifier required) to Ethernet in
the Set Target Reference Design task.

Properties of hdlcoder.ReferenceDesign class renamed
AddJTAGMATLABasAXIMasterParameter renamed to AddMATLABAXIManagerParameter
Still runs

The AddJTAGMATLABasAXIMasterParameter property of the hdlcoder.ReferenceDesign class
has been renamed to AddMATLABAXIManagerParameter. Using the
AddJTAGMATLABasAXIMasterParameter property is not recommended and will be removed in a
future release.

JTAGMATLABasAXIMasterDefaultValue renamed to MATLABAXIManagerDefaultValue
Errors

The JTAGMATLABasAXIMasterDefaultValue property of the hdlcoder.ReferenceDesign class
has been renamed to MATLABAXIManagerDefaultValue. Using the
JTAGMATLABasAXIMasterDefaultValue property generates an error, use
MATLABAXIManagerDefaultValue instead.

R2022b

2-22

https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/hdlcoder.referencedesign-class.html#mw_15d651a3-60d6-405d-95d0-fcb5b04605e7
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ref/hdlcoder.referencedesign-class.html#mw_d6c6df4b-0d4c-441e-ac8b-bc3be20a8983

Simscape Hardware-in-the-Loop Workflow

Optimal value of solver iterations for nonlinear Simscape models
Starting in R2022b, the Simscape HDL Workflow Advisor automatically sets an optimal number of
solver iterations for your HDL implementation models that contain nonlinear networks with the
Partitioning solver. To enable this functionality, run the Advisor for your Simscape model and deselect
(disable) the Use fixed-cost runtime consistency iterations option in the Solver Configuration
(Simscape) block settings, which automatically sets the Number of solver iterations. You can then
generate HDL code from the model and run your design at an optimal achievable target frequency.
With this enhancement, the sschdlexHalfWaveRectifierExample.slx model now generates
HDL code for the target platform Xilinx Vivado Kintex-7 xc7k325t IO334 part with a switching
frequency of 4.76 MHz.

Previously, the Number of solver iterations was set to a default value of 5 on the HDL
implementation model containing nonlinear blocks.

Optimization of mapping mode vector to index subsystem to achieve
higher clock frequency for nonlinear Simscape networks
In R2022b, the Simscape to HDL workflow optimizes the mapping of mode vectors to index
subsystems for the nonlinear Simscape networks in your HDL implementation models. You can then
generate HDL code and deploy onto Speedgoat® FPGA I/O modules. This optimization helps to
achieve higher clock frequency. With this optimization, the
sschdlexSwissRectifierExample.slx model now generates HDL code for the target platform
Xilinx Vivado Kintex-7 xc7k325t IO334 part with a Target Frequency of 100 MHz.

Previously, the optimization was supported only for switched linear Simscape networks.

Simscape to HDL Workflow Reference Applications
Deploy Simscape DC Motor Model to Speedgoat FPGA IO Module

The example shows how to design and deploy the buck converter model for linear and nonlinear
Simscape networks. You can generate HDL code for the buck converter with fixed resistor as load
(linear) and another model with DC motor as load (nonlinear). You can simulate these models
ee_buck_converter_hdl.slx and ee_buck_converter_dc_motor_hdl.slx, and deploy onto a
Speedgoat FPGA I/O module.

HDL code generation support for Simscape tablelookup function
Starting in R2022b, you can generate HDL code for your Simscape model that has a custom block or
a Simscape library block containing the tablelookup (Simscape) function. For the tablelookup
function, the approximation methods supported for code generation are interpolation = linear
and extrapolation = linear. The tablelookup function supports up to four-dimensional lookup
tables. For more information about systems of equation in the Partitioning solver, see Understanding
How the Partitioning Solver Works (Simscape).

 Simscape Hardware-in-the-Loop Workflow

2-23

https://www.mathworks.com/help/releases/R2022b/simscape/ref/solverconfiguration.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/deploy-simscape-dc-motor-model-to-speedgoat-fpga-io-module.html
https://www.mathworks.com/help/releases/R2022b/simscape/lang/tablelookup.html
https://www.mathworks.com/help/releases/R2022b/simscape/ug/understanding-how-the-partitioning-solver-works.html
https://www.mathworks.com/help/releases/R2022b/simscape/ug/understanding-how-the-partitioning-solver-works.html

HDL code generation from Simulink-PS Converter block with input
filtering
The Simscape to HDL workflow supports HDL code generation for Simulink-PS Converter (Simscape)
blocks in Simscape models with input filtering. To enable this feature, you must select the Use local
solver check box in the Solver Configuration (Simscape) block settings and then set the Solver type
parameter to Backward Euler. Then, double-click the Simulink-PS Converter (Simscape) block and
set the Input signal unit parameter. For more information, see Release Notes for Simscape
(Simscape).

HDL code generation from PS-Simulink Converter block with unit
conversion
The Simscape to HDL workflow supports HDL code generation for PS-Simulink Converter (Simscape)
blocks in Simscape models with unit conversion. To enable this feature, you must select the Use local
solver check box in the Solver Configuration (Simscape) block settings and then set the Solver type
parameter to Backward Euler or Partitioning. Then, double-click the PS-Simulink Converter
(Simscape) block and set the Output signal unit parameter. For more information, see Release
Notes for Simscape (Simscape).

HDL code generation support for Simscape integer-valued events and
mode charts
Starting in R2022b, the Simscape to HDL workflow supports HDL code generation for Simscape
models that have integer-valued events and mode charts.

For HDL code generation, double-click the Solver Configuration (Simscape) block in the model, select
the Use local solver check box and then set the Solver type parameter to Partitioning. To learn
more about HDL code generation, see Generate HDL Code for Two-Speed Transmission Model
Containing Mode Charts.

For more information, see Release Notes for Simscape (Simscape).

HDL code generation support for Simscape converter blocks with
averaged switches
The Simscape to HDL workflow supports HDL code generation for Simscape models that have
converter blocks with averaged switches.

For HDL code generation, double-click the converter block to open the settings, and set these
parameters:

• Set the Switching device parameter to Averaged Switch.
• Set the Integer for piecewise constant approximation of gate input (0 for disabled)

parameter to a value greater than 0.

Then, double-click the Solver Configuration (Simscape) block, select the Use local solver check box
and set the Solver type parameter to Partitioning.

To learn more about how to generate HDL code, see Generate HDL Code for Simscape Three-Phase
PMSM Drive Containing Averaged Switch.

R2022b

2-24

https://www.mathworks.com/help/releases/R2022b/simscape/ref/simulinkpsconverter.html
https://www.mathworks.com/help/releases/R2022b/simscape/ref/solverconfiguration.html
https://www.mathworks.com/help/releases/R2022b/simscape/ref/simulinkpsconverter.html
https://www.mathworks.com/help/releases/R2022b/simscape/ref/pssimulinkconverter.html
https://www.mathworks.com/help/releases/R2022b/simscape/ref/solverconfiguration.html
https://www.mathworks.com/help/releases/R2022b/simscape/ref/pssimulinkconverter.html
https://www.mathworks.com/help/releases/R2022b/simscape/ref/solverconfiguration.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/generate-hdl-code-for-two-speed-transmission-model-with-mode-charts.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/generate-hdl-code-for-two-speed-transmission-model-with-mode-charts.html
https://www.mathworks.com/help/releases/R2022b/simscape/ref/solverconfiguration.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/generate-hdl-code-for-simscape-three-phase-pmsm-drive-containing-averaged-switch.html
https://www.mathworks.com/help/releases/R2022b/hdlcoder/ug/generate-hdl-code-for-simscape-three-phase-pmsm-drive-containing-averaged-switch.html

For more information, see Release Notes for Simscape (Simscape) and Release Notes for Simscape
Electrical (Simscape Electrical).

Clock-rate pipelining optimization enhancements for HDL code
generation from Simscape models
To generate optimized HDL code from your Simscape models, you can apply new clock-rate pipelining
enhancements that:

• Support feedback loops with multiple rates. For more information, see “Clock-rate pipelining
support for rate transition blocks in multi-rate designs” on page 2-14.

• Achieve maximum real-time performance by providing HDL Code Generation Check Report that
suggests the optimal values of Oversampling factor. For more information, see “Required
oversampling factor reported in clock-rate pipelining error messages” on page 2-12.

• Do not require flattening the subsystem hierarchy. For more information, see “Hierarchical clock-
rate pipelining improvements” on page 3-22.

All these enhancements in optimization enable you to use multiple Simscape network architectures in
your model efficiently. These enhancements help in optimized HDL code generation while achieving
higher clock frequency.

 Simscape Hardware-in-the-Loop Workflow

2-25

R2022a

Version: 3.20

New Features

Bug Fixes

Compatibility Considerations

3

Model and Architecture Design

HDL optimized arithmetic operations
In R2022a, the functions hdl.treesum and hdl.treeprod use a tree architecture to sum or
multiply elements, rather than a linear architecture that the functions sum and prod use. The tree
architecture summation and multiplication yield shorter critical paths, which leads to reduced latency
when generating HDL code from a MATLAB Function block. When generating HDL code, the
functions hdl.treesum and hdl.treeprod reduce the amount of matching delays needed to sum or
multiply elements compared to the sum and prod functions. See hdl.treesum and hdl.treeprod.

When the MATLAB Function block HDL block property Architecture is set to MATLAB Datapath,
the functions hdl.treesum and hdl.treeprod can use HDL Coder optimizations that you set for a
model. For more details, see Use MATLAB Datapath Architecture for Enhanced HDL Optimizations.

Additional functions for MATLAB function blocks that have MATLAB
Datapath architecture
In R2022a, HDL Coder provides more MATLAB functions for HDL code generation for MATLAB
function blocks that have the HDL block property Architecture set to MATLAB Datapath.

You can use functions that use the input argument varargin. Additional checks have been added to
the function checkhdl to determine if cell arrays are accessed and initialized correctly using
varargin. For more information, see varargin.

In R2022a, you can use functions defined inside of packages for HDL code generation. For more
information on user-defined packages, see Packages Create Namespaces.

Counter reuse from serialization
In R2022a, for models that have multiple deserializer outputs, HDL Coder generates one common
counter that is shared between the serializer and deserializer. This counter reduces resource
utilization and supports scalar, vector, and matrix inputs. During your hardware implementation, the
counter might prevent these safety concerns:

• Electrical surges might cause a value mismatch between multiple separate counters.
• Reset timing of serializer and deserializers are different during an asynchronous reset potentially

causing a phase difference between the separate serializer and deserializer counters.

This image shows the comparison in the generated code before R2022a and in R2022a.

R2022a

3-2

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/hdl.treesum.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/hdl.treeprod.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/design-guidelines-for-the-matlab-function-block.html#mw_dc7f70d9-1dd8-4a5c-8a13-665c32ef1b7e
https://www.mathworks.com/help/releases/R2022a/matlab/ref/varargin.html
https://www.mathworks.com/help/releases/R2022a/matlab/matlab_oop/scoping-classes-with-packages.html

Generated model before R2022a

R2022a Generated model

In this image, the code inside the Deserializer_Subnetwork is shown in detail in the box titled
Deserializer_Subnetwork.

Inside Deserializer_Subnetwork, the enabled delay driven by the same counter used for
serializer output is produced by the multiplier when the counter counts to a value equal to the
sharing factor. In this example, the sharing factor is four.

This image shows the resource utilization report comparison for the generated model without counter
sharing and the generated model with counter sharing.

 Model and Architecture Design

3-3

Changes in HDL coding standards
In R2022a, HDL Coder has made changes in HDL coding standards. When you select the HDL
coding standard as Industry:

• You can use the reset names as reset_N and RST_N for reset signals that have negative logic. You
can specify these names in Reset input port configuration parameters in HDL Code Generation
> Global Setting. The HDL Model Advisor Check clock, reset, and enable signals passes when
you specify these reset names for a reset port. Previously in R2021b, this check displays a warning
when you used these reset names and set the HDL coding standard to Industry.

• You cannot specify a prefix to the instance name. The Instance Prefix configuration parameter in
the HDL Code Generation > Global Setting > General tab is not available. You cannot add
instance prefix, such as 'u_', to the instance name when the HDL coding standard is Industry.

• The configuration parameters, such as PackagePostfix, MinimizeClockEnables,
MinimizeGlobalResets and InstancePrefix, are ignored. The HDL Code Generation Check
Report displays a warning for these ignored parameters.

Enhanced HDL Model Advisor checks
In R2022a, HDL Coder has enhanced these Model Advisor checks:

• For a Subsystem that has BlackBox HDL Architecture, you cannot generate HDL code when you
select those subsystems as a top-level subsystem. You check these subsystems by using the HDL
Model Advisor Check for invalid top level subsystem. This check now displays a warning when you
select the BlackBox Subsystem as a top-level subsystem.

• You cannot generate HDL code for a Trigger Block that has Trigger type set to function-call
or message. The HDL Model Advisor Check for unsupported blocks now displays a warning for
the these Trigger blocks.

R2022a

3-4

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/check-clock-reset-and-enable-signals.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/check-for-invalid-top-level-subsystem.html
https://www.mathworks.com/help/releases/R2022a/simulink/slref/trigger.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/check-for-unsupported-blocks.html

Block Enhancements

Option for preserving logic connected to Terminator block
HDL Coder removes logic connected to Terminator blocks. This logic is referred to as unconnected
logic. Unconnected logic is removed from the generated HDL code because it does not contribute to
the output ports of the device under test (DUT).

In R2022a, you can preserve unconnected logic. You can control the removal of unconnected logic in
HDL code generation for each individual Terminator block in your design by using the
PreserveUpstreamLogic HDL block property. This property is available for Terminator blocks only.
For more information, see PreserveUpstreamLogic. For an example, see the "Upstream Logic
Preservation of Unused Port" section of Optimize Unconnected Ports in HDL Code for Simulink
Models.

MinMax block streaming and min and max function vector inputs
In R2022a, you can use vector inputs for the min and max functions when you use them in a MATLAB
function block that has the HDL block property Architecture set to MATLAB Datapath. These min
and max functions and the MinMax block are available for streaming to reduce the amount of
resources for the min or max comparison. For more information, see Streaming, MinMax, min, and
max.

If and Switch Case Action blocks support
In R2022a, HDL Coder supports code generation for these blocks:

• If
• If Action Subsystem
• Merge
• Switch Case
• Switch Case Action Subsystem

HDL Coder turns these blocks into constructs suitable for hardware by using multiplexers.

HDL code generation for variable integer Delay block
Starting in R2022a, you can generate HDL code for the Variable Integer Delay block. You can now
generate code for Delay block that has Delay length set through the Input port. You can set the
delay length by specifying the constant value at the 'd' Input port of Delay block.

 Block Enhancements

3-5

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/block-implementation-parameters.html#mw_7ebd067c-8648-4c12-aea5-74d878dc8c21
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/optimize-unused-ports-in-hdl-code.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/optimize-unused-ports-in-hdl-code.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/streaming.html
https://www.mathworks.com/help/releases/R2022a/simulink/slref/minmax.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2022a/simulink/slref/delay.html

For a Simulink model consisting of multiple Delay blocks that have same delay length, you can specify
the delay length of all the Delay blocks by using a constant instead of setting the delay length of each
block. You can use enable and reset ports for the variable integer Delay block. For more details, see
HDL Code Generation.

HDL Property 'RAMDirective' for HDL FIFO block
In R2021b, HDL Coder added mapping large memory blocks, such as ultra from the Xilinx family
and M144k from the Quartus family on FPGAs. You can map FPGA memory blocks by specifying
synthesis attribute value in the HDL Block Property RAMDirective for Simulink blocks. You can map
FPGA memory blocks for Random Access Memory (RAM) blocks. For more information, see
RAMDirective.

In R2022a, you can map FPGA memory blocks for HDL FIFO block. To specify these attributes in
Simulink, configure appropriate attribute values for the RAMDirective in HDL Block properties of
the HDL FIFO block.

R2022a

3-6

https://www.mathworks.com/help/releases/R2022a/simulink/slref/delay.html#bsz8byc_hdl
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/block-implementation-parameters.html#mw_10175147-26c4-42de-887f-3893fa64157c
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/hdlfifo.html

To specify these attributes at the MATLAB command line, use the RAMDirective parameter name
value pair for hdl.RAM instantiation or use hdlset_param function. You can set the RAMDirective
by using either of these commands:

hRam = hdl.RAM(‘RAMType’, ‘Dual port’, ‘RAMDirective’, ‘ultra’);
or

hdlset_param(<ram_block_name>, ‘RAMDirective’, <attribute_value>)

The table shows the list of the RAMDirective values based on the synthesis tools.

Synthesis Tool RAM Style Attribute RAM Directive Values
Quartus ramstyle logic| M9K| M10K| M20K|

M144K| MLAB
Xilinx ram_style block| distributed|

register| ultra
Microsemi™ syn_ramstyle block_ram| registers|

lsram| uram

HDL Block Property 'AsyncRTAsWire' added for Rate Transition block
A new HDL Block Property AsyncRTAsWire is added for the Rate Transition block. For a Rate
Transition block, when Output port sample time has noninteger values, it is considered as
asynchronous rates. Enable the AsyncRTAsWire option to generate a wire when such asynchronous
rates are present for the Rate Transition block. This option is available only when the Ensure data
integrity during data transfer and Ensure deterministic data transfer parameters are set to

 Block Enhancements

3-7

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/hdl.ram-system-object.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2022a/simulink/slref/ratetransition.html

off.

Local Reset Port for HDL FIFO block
A new block parameter Local reset port has been added for HDL FIFO block. By enabling this
option, you can insert an additional reset port for the HDL FIFO block. The generated HDL code for
HDL FIFO block now has a reset port. When the reset port receives a value of 1, it resets the Empty,
Full, and Num outputs of the HDL FIFO block.

For-Generate loops for Selector block
In R2022a, the coding style for Selector blocks has been improved. The generated HDL code for
Selector block has these coding style enhancements:

R2022a

3-8

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/hdlfifo.html
https://www.mathworks.com/help/releases/R2022a/simulink/slref/selector.html

• The HDL code is generated by using For loops when you select the target language as VHDL.
• By default, the loop unrolled code is generated when the target language is Verilog.

For example, this image shows VHDL code generated for the Selector block by using For loops.
The generated HDL code has better code readability, reduced lines of code, and reduced code
generation time. For more details, see Unroll For-Generate Loops in VHDL code.

n-Dimensional lookup table
HDL Coder has improved the code generation for n-D Lookup Table and Direct Lookup Table (n-D)
blocks. You can now generate code for n-D lookup table and Direct lookup table blocks that have a
table dimension between 1 to 30. You can generate code for half, single, and double floating-point
data types for all table dimensions in the lookup tables. You can generate code for n-D lookup table
block for all table dimensions that have Parallel or Serial area optimization.

Enhancements in trigonometric blocks that use CORDIC-based
approximation method
HDL Coder has improved the performance of the trigonometric blocks, such as Sin,Cos, Cos+jSin and
SinCos and atan2 that use CORDIC-based approximation method. HDL code generation has improved

 Block Enhancements

3-9

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/rtl-style.html#buiuh3k-196
https://www.mathworks.com/help/releases/R2022a/simulink/slref/ndlookuptable.html
https://www.mathworks.com/help/releases/R2022a/simulink/slref/directlookuptablend.html

the bit accuracy and minimized the precision loss for the trigonometric blocks that have
Approximation Method as CORDIC.

Enhancements in HDL Math library blocks
The blocks in the HDL Math library perform the math and trigonometric operations. These blocks
have control ports, such as Valid_In and Valid_out. For more information on HDL Math library
blocks, see Implement Control Signals-Based Mathematical Functions by Using HDL Coder.

In R2022a, HDL Coder has provides these enhancements to the HDL Math library blocks:

• The block parameters Latency strategy and Custom latency are added for the blocks in Block
Parameter UI.

• For Sqrt, Divide, and Reciprocal blocks in HDL Math library, the block parameters Output data
types, Integer rounding mode, and Saturate on integer overflow are added to the Block
Parameter UI.

R2022a

3-10

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/implement-control-signals-based-functions-using-hdl-coder.html

Improved HDL code generation for Serializer1D and Deserializer1D
blocks
In R2022a, HDL Coder has enhanced code generation for the Serializer1D and Deserializer1D blocks.
HDL code generation uses For-Generate looping constructs for realizing Serializer1D and
Deserializer1D blocks. You can now generate code for Serializer1D and Deserializer1D blocks that
have high-dimensions vector inputs. For more details, see Unroll For-Generate Loops in VHDL code.

For example, the figure shows the difference between generated HDL code for Deserializer1D block.
In R2021b, the scalarization logic for Deserialzer1D block was re-implemented in a top-level
subsystem based on the input vector size. In R2022a, scalarization logic is implemented in a
Deserializer sub-network and it is instantiated in a top-level subsystem by using port mapping. The
generated code has better code readability, reduced lines of code and reduced code generation time.

 Block Enhancements

3-11

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/serializer1d.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/deserializer1d.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/rtl-style.html#buiuh3k-196

Matrix types support for design under test (DUT)
HDL Coder supports matrix types for various Simulink blocks. In R2021b, when you used these
blocks in DUT subsystem, HDL code generation did not support matrix types at the DUT interface. To
use matrix types inputs and outputs, you have to convert matrices to vectors at the DUT interface by
using additional Reshape or Concatenate blocks.

Starting in R2022a, HDL Coder supports matrix types inputs and outputs at the DUT interface. This
enhancement reduces the overhead of adding Reshape and Concatenate blocks inside the DUT and
also improves readability of the generated HDL code.

R2022a

3-12

Shift-Add architecture for reciprocal function in Math Function Block
The reciprocal function in Math Function block now supports Shift-Add architecture. You can use the
HDL architecture as ShiftAdd in HDL Block Properties for the reciprocal function in the Math
Function block. Use Shift-Add architecture to perform reciprocal operation on fixed-point data types
by using a nonrestoring division algorithm that performs multiple shift and add operations to
compute the reciprocal.

 Block Enhancements

3-13

https://www.mathworks.com/help/releases/R2022a/simulink/slref/mathfunction.html

Logic guarding index access preservation
In R2022a, during simulation if you get a fatal error, for example Fatal:(vsim-3421), you can
enable an option that prevents temporary variables for array indices being removed from conditional
loops. When you enable this option, the generated code might be inefficient for your target hardware.
For more information, see GuardIndexVariables.

R2022a

3-14

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/block-implementation-parameters.html#mw_a64a91e6-b9fa-45a1-b4e8-fad2a77d0d93

Code Generation and Verification

Clock frequency specification in MATLAB to HDL Workflow Advisor
In R2022a, you can specify the target clock frequency in the Generic ASIC/FPGA, FPGA Turnkey,
and the IP Core Generation workflows in the MATLAB to HDL Workflow Advisor. To specify the
target frequency, open the MATLAB HDL Workflow Advisor > Select Code Generation Target task.
Adaptive pipelining takes into account the target frequency that you set to improve the frequency of
your design. For more information, see the TargetFrequency property in coder.HdlConfig.

Indexing for scalarized port naming
In R2022a, you can specify the starting index for the names of scalarized vector ports as Zero-based
or One-based. You can control the starting index name to match other indexing schemes in other
parts of your design. For more information, see Indexing for scalarized port naming.

Generation of traceability report in Japanese language
Previously in R2021b, when you viewed the traceability report in the Japanese language, the
generated report has text in English and Japanese languages. It is inconvenient to view the report in
the mixed languages. In R2022a, HDL Coder has improved the readability of the generated reports.
You can now view the complete report in the Japanese language.

Improved critical path estimation
You can compute the critical path of your design by generating the high-level timing critical path
report. For more information, see Critical Path Estimation Without Running Synthesis.

In R2022a, HDL Coder has improved the critical path report to provide a more accurate timing
estimation of the critical paths in your design. These enhancements are:

• Blocks that supports custom latency for fixed-point and floating-point data types now participate
in critical path estimation.

• Blocks that use half-precision floating-point data types are marked as 'Block not
characterized'. These blocks do not participate in critical path estimation.

 Code Generation and Verification

3-15

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/coder.hdlconfig.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/rtl-style.html#mw_b434609a-c63d-4d05-b33b-b5208f2f03ed
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/find-estimated-critical-paths-without-synthesis-tools.html

Enhancements to the genhdltdb function
You can generate the timing databases for the target device by using the genhdltdb function. In
R2022a, HDL Coder has made these enhancements to the genhdltdb function:

• A new name-value input argument SynthesisDeviceConfiguration has been added. You can
now assign values such as Device Family, Device Name, Device Package, and Device
Speed Grade in the single argument.

For example, consider a Xilinx Artix - 7 target device, you can now specify target-specific
information, such as device family, device name, device package and device speed grade, by using
SynthesisDeviceConfiguration argument in genhdltdb.

genhdltdb('SynthesisDeviceConfiguration',{'Artix7','xa7a100t','csg324','-1I'}, ...
 'TimingDatabaseDirectory','C:\Work\Database', ...
 'SynthesisToolName','Xilinx Vivado', ...
 'SynthesisToolPath','C:\Xilinx\Vivado\2019.2\bin\vivado.bat');

Similarly, for a Xilinx Kintex UltraScale+™ target device, where the device name includes device
package and device speed grade. You can specify device family and device name, by using
SynthesisDeviceConfiguration argument in genhdltdb.

R2022a

3-16

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/genhdltdb.html

genhdltdb('SynthesisDeviceConfiguration',{'Kintex Ultrascale+','xcku11p-ffva1156-1-e'}, ...
 'TimingDatabaseDirectory','C:\Work\Database', ...
 'SynthesisToolName','Xilinx Vivado', ...
 'SynthesisToolPath','C:\Xilinx\Vivado\2019.2\bin\vivado.bat');

• The Custom Timing Database Directory in the HDL Configuration Parameters dialog box has
command-line parameter name as TimingDatabaseDirectory. To make the output path
argument consistent with the Custom Timing Database Directory, the argument name
OutputPath has changed to TimingDatabaseDirectory.

• The MAT files are generated in the path specified in TimingDatabaseDirectory argument
value.

Compatibility Considerations
The argument name OutputPath is renamed to TimingDatabaseDirectory.

Out-of-bounds error suppression during ModelSim simulation
Prior to R2022a, array indices might go out of bounds causing simulation to fail. Array indices might
go out of bounds due to the way ModelSim® handles delta time step propagations. This image shows
how a delta time step propagation results in an out-of-bounds index value of -1 for the variable idx.

 Code Generation and Verification

3-17

In R2022a, during simulation if you get a fatal error, for example Fatal:(vsim-3421), you can
enable an option to generate additional logic that runs during simulation time to prevent array
indices from going out of bounds. See Suppress out-of-bounds access errors by generating simulation-
only index checks.

SystemC Code Generation from MATLAB Code
Starting in R2022a, a new workflow MATLAB to SystemC is introduced in HDL Coder. The workflow
generates SystemC code from MATLAB code and synthesizes it by using the High-Level Synthesis
(HLS) tools.

You can generate SystemC code by using command-line interface, as described in Get Started with
MATLAB to SystemC Workflow Using the Command Line Interface. Alternatively, you can use the
HDL Workflow Advisor as described in Get Started with MATLAB to SystemC Workflow Using HDL
Coder App.

You can optimize the generated SystemC code to save design space in the target hardware by using
RAM mapping functionality. For more information see, Map Persistent Variables to RAM for
Histogram Equalization.

R2022a

3-18

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/code-generation-output.html#mw_00069264-0bbe-49d1-9500-3a944029fede
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/code-generation-output.html#mw_00069264-0bbe-49d1-9500-3a944029fede
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/get-started-with-matlab-to-systemc-workflow-using-the-command-line-interface.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/get-started-with-matlab-to-systemc-workflow-using-the-command-line-interface.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/get-started-with-matlab-to-systemc-workflow-using-hdl-coder-app.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/get-started-with-matlab-to-systemc-workflow-using-hdl-coder-app.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/systemc-map-persistent-variables-to-RAM-for-histogram-equalization.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/systemc-map-persistent-variables-to-RAM-for-histogram-equalization.html

Speed and Area Optimizations

Streaming and sharing area optimization improvements
In R2022a, the streaming and resource sharing optimizations have been improved:

For resource sharing, data type conversion is optimized when sharing signals with different fraction
lengths.

Before R2022a, when sharing only signed signals with different fraction lengths, resource sharing
produced an additional bit in the generated model and HDL code. Now, no additional bit is added
when sharing only signed signals. For example, the synthesis results for a model sharing signed
signals with different fraction lengths show a reduced number of dedicated logic registers used.

Resource Usage
 Before R2022a R2022a
Combinational Adaptive Look-Up
Tables (ALUTs)

36 36

Dedicated logic registers 622 611
DSP blocks 1 1

Before R2022a, when sharing only unsigned signals that had different fraction lengths, resource
sharing converted the unsigned signals to signed signals with 0 fraction length in the generated
model and HDL code. Now, the unsigned to signed conversion does not happen and the number of
hardware resources used are reduced. For example, the synthesis results for a model sharing
unsigned signals with different fraction lengths show a reduced number of dedicated logic registers
and DSP blocks used.

Resource Usage
 Before R2022a R2022a
Combinational ALUTs 36 36
Dedicated logic registers 556 510
DSP block 18-bit elements 4 2

For resource sharing, you can now share signals with different signs and different word lengths
through multiplier promotion.

For example, before R2022a, a generated model unable to share through multiplier promotion signals
with different signs and word lengths looked like this figure.

 Speed and Area Optimizations

3-19

Now, when you can share signals with different signs and word lengths through multiplier promotion,
the generated model looks like this figure.

The synthesis results of the same model show that the number of DSP slices used is reduced from 2
to 1.

Resource Usage
 Before R2022a R2022a
Slice Look-up Tables (LUTs) 68 121
Slice Registers 244 338

R2022a

3-20

Resource Usage
DSPs 2 1

To enable sharing through multiplier promotion, enable resource sharing for multipliers for your
subsystem and set the Multiplier promotion threshold to an integer greater than 0, depending on
the word length difference between the signals that you want to share. For more information, see the
multiplier promotion threshold section of Resource Sharing Parameters for Adders and Multipliers.

For streaming, more hardware resources are saved by not creating a streaming subnetwork for
constant inputs. Now, constant inputs are not included in the streaming partition of the generated
model and HDL code. For example, the resource utilization summary that HDL Coder estimated for a
model with constant inputs and streaming enabled shows a reduction in multiple hardware resources
used.

Resource Usage
 Before R2022a R2022a
Multipliers 1 1
Adders/Subtractors 6 5
Registers 18 14
Total 1-Bit Registers 600 416
Multiplexers 22 17

For more information, see Resource Sharing, Resource Sharing Settings for Various Blocks, and
Streaming.

Synthesis timing estimates for distributed pipelining
When applying distributed pipelining to a subsystem, HDL Coder calculates an approximate
propagation delay for each component in your design to determine where to place the added delays.

Before R2022a, when you enabled distributed pipelining for a subsystem, HDL Coder calculated
propagation delay for the components in the subsystem by assigning each component an equal
weight, except for wire components, such as Selector blocks and Bit Concat blocks, that were
assigned zero propagation delay.

Starting in R2022a, you have the option to use synthesis timing estimates for distributed pipelining to
determine more accurate propagation delays for each component. Different weights are assigned to
varying components, which more accurately reflects how the components function on hardware. HDL
Coder can better distribute pipelines in your design for HDL code generation and hardware
deployment by enabling the model configuration parameter Use synthesis estimates for
distributed pipelining, located in HDL Code Generation > Optimization > Pipelining tab. For
more information, see Distributed Pipelining Using Synthesis Timing Estimates and Use synthesis
estimates for distributed pipelining.

Adaptive Pipelining for MATLAB to HDL Workflow
In R2022a, Adaptive Pipelining is an available optimization option for the MATLAB to HDL workflow.
Enable adaptive pipelining for your design to insert pipeline registers to the blocks in your design,
reduce the area usage, and maximize the achievable clock frequency on the target FPGA device. For

 Speed and Area Optimizations

3-21

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/resource-sharing-of-adders-and-multipliers.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/resource-sharing.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/resource-sharing-settings-for-various-blocks.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/streaming.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/distributed-pipelining-using-synthesis-timing-estimates.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/pipelining-parameters.html#mw_9746195d-6a97-44c5-86c5-41cb598638fe
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/pipelining-parameters.html#mw_9746195d-6a97-44c5-86c5-41cb598638fe

more information, see Optimize Clock Speed for MATLAB Code by Using Adaptive Pipelining and
AdaptivePipelining.

Automatic iterative optimization by using critical path estimation
Automatic iterative optimization helps improve clock frequency by inserting pipeline registers to
break and shorten the critical path.

Previously, the hdlcoder.optimizeDesign function implemented this optimization by using
synthesis to determine the critical path of the design. Running this automatic iterative optimization
can take a long time due to synthesis. For example, when using the hdlcoder.optimizeDesign
function, synthesis can occupy nearly 94% of the run time of this function.

In R2022a, the hdlcoder.optimizeDesign function has an option to choose critical path
estimation as the timing strategy. Critical path estimation runs faster than synthesis because it can
estimate the critical path without running synthesis on the design.

When you use CriticalPathEstimation as the TimingStrategy, the time to run
hdlcoder.optimizeDesign is significantly shorter. To use this timing strategy, see Automatic
Iterative Optimization, hdlcoder.optimizeDesign, and hdlcoder.OptimizationConfig.

Optimizations support for Counter blocks
Starting in R2021b, counter blocks now participate in optimizations. You can now configure different
speed and area optimizations on a subsystem that has counter blocks. For more information, see
Speed and Area Optimizations in HDL Coder.

Hierarchical clock-rate pipelining improvements
In R2022a, you can now use clock rate pipelining more widely across subsystem boundaries without
having to flatten the hierarchy. Preserving the subsystem hierarchy:

• Improves the modularity of your design by making navigation through the generated model easier
to understand and use for debugging, especially in large designs with complex hierarchies.

• Improves readability of the generated HDL code by creating multiple Verilog or VHDL files for the
various subsystem blocks in your design.

While flattening the subsystem hierarchy is no longer required to use clock rate pipelining, flattening
the subsystem hierarchy can be useful when you want to perform certain system-level optimizations,
such as sharing or distributed pipelining. See Guidelines 3.2: Clock Rate Pipelining and Distributed
Pipelining.

R2022a

3-22

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/optimize-clock-speed-for-matlab-code-using-adaptive-pipelining.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/coder.hdlconfig.html#mw_c4948fa9-31d9-412e-8789-e4fa2cbe6ad3
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/automatic-iterative-optimization.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/automatic-iterative-optimization.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/hdlcoder.optimizedesign.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/hdlcoder.optimizationconfig-class.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/introduction-to-speed-and-area-optimizations-in-hdl-coder.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/guidelines-for-speed-and-area-optimizations-by-numbered-list.html#mw_d92e2a2a-1d61-4035-b8b6-5580385db2c3
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/guidelines-for-speed-and-area-optimizations-by-numbered-list.html#mw_d92e2a2a-1d61-4035-b8b6-5580385db2c3

IP Core Generation and Hardware Deployment

HDL Coder Support for Xilinx Versal Devices: Generate IP core and
deploy reference designs on Xilinx Versal devices
HDL Coder enables the generation of IP cores that can integrate into Xilinx Versal devices. You can:

• Generate standalone IP core for Versal devices.
• Map your design to any interface supported by HDL Coder, such as AXI4 Slave, AXI4-Stream, AXI4

Master, AXI4-Stream Video, and External Port interfaces.

The generated HDL code is packaged as a Vivado IP core that has corresponding interfaces. You can
manually integrate the IP core into any Versal block design.

The HDL Coder Support Package for Xilinx Zynq Platform includes a reference design for the Xilinx
Versal AI Core Series VCK190 Evaluation Kit. Using the support package, you can:

• Generate an IP core and programmable device image (PDI) for the VCK190 board.
• Map your design to AXI4 Slave and board interfaces (push button, DIP switch, LED).

The generated IP core is integrated into a default system reference design. You can then build a PDI
and program the Versal device.

You can author new reference designs for the VCK190 board. For example, you can:

• Reuse the VCK190 board plugin.
• Create Vivado block designs.
• Write new reference design plugin files.
• Use the default system reference design as a template.

You can author new board plugins for other Versal boards. For example, you can:

• Write new board plugin files.
• Use the VCK190 board plugin as a template.
• Author reference designs for a new board.

HDL Coder Support Package for Microchip FPGA and SoC Devices:
Generate IP core and deploy reference designs on Microchip FPGA and
SoC devices
The HDL Coder Support Package for Microchip FPGA and SoC Devices supports the generation of IP
cores that you can integrate into FPGA designs by using the Microsemi Libero Design Suite.

This support package includes reference designs for Microchip development kits so that can generate
HDL code and port mappings to I/O and AXI registers. It supports the HDL Coder custom reference
design API so that you can develop reference designs for a variety of boards based on Microchip
devices.

For complete documentation of the support package, see HDL Coder Support Package for Microchip
FPGA and SoC Devices.

 IP Core Generation and Hardware Deployment

3-23

https://www.mathworks.com/help/releases/R2022a/supportpkg/microfpgasoc/index.html
https://www.mathworks.com/help/releases/R2022a/supportpkg/microfpgasoc/index.html

Reference design workflow for Microsemi Libero SoC
The reference design workflow was supported for Xilinx and Intel based reference designs. HDL
Coder has now added this reference design workflow for Microchip platforms. You can now use this
reference design workflow on Microchip platforms, such as Polarfire® SoC FPGA boards.

In R2021b, HDL Coder had added the IP Core Generation workflow support for the Microsemi Libero
SoC tool. It was supported only for Generic Microchip Platform which generates IP core for a
target-independent platform. In R2022a, you can now generate IP core for a target-specific Microchip
platform, such as Microchip PolarFire SoC Icicle Kit, by using the reference design
workflow.

In the HDL Workflow Advisor task Set Target Device and Synthesis Tool, you can now select the
Target platform as Microchip PolarFire SoC Icicle Kit for IP Core Generation target
workflow. For the Microchip PolarFire SoC Icicle Kit target platform, you can use the Reference
Design as the Default System in task Set Target Reference Design.

The figure shows the block design of default system reference design for the Microchip PolarFire SoC
Icicle Kit target platform. The reference design workflow integrates your generated IP core with the
other IPs such as processors and interfaces in the reference designs. You can generate bitstream for
your design under test (DUT) and program the Polarfire SoC board for testing your DUT.

R2022a

3-24

HDL IP core on the Microchip PolarFire SoC Icicle kit
An example is added that shows the step-by-step guide, which helps you use HDL Coder to generate
and integrate a custom HDL IP core on the Microchip PolarFire SoC Icicle kit. Using this example,
you can insert your generated IP core into a embedded system reference design, generate an FPGA
bitstream, and download the bitstream to the Polarfire SoC hardware. For more details, see Integrate
HDL IP Core with Microchip PolarFire SoC Icicle Kit Reference Design.

FPGA and SoC hardware object and FPGA programming workflow
In R2022a, you can use a new set of hardware object services to:

• Connect to your SoC board from MATLAB.
• Perform basic Linux® shell operations, such as system commands and file operations.
• Program your FPGA at the MATLAB command-line.

For more information, see the hardware processor objects xilinxsoc and intelsoc.

ID signals in AXI4 Master Interface in IP core generation workflow
In R2022a, you can use ID signals for the Simplified AXI4 Master Protocol in the IP core generation
workflow. Use ID signals to:

• Allow multiple modules to share the same AXI Master Interface.
• Enable out-of-order requests for data. ID signals allow an AXI Master to issue requests without

waiting for a prior request to finish.
• Reduce the amount of AXI4 Master Interfaces needed for a Simulink model.

To use ID signals for an AXI4 Master read request, you need to model additional signals rd_arid and
rd_rid. To use ID signals for an AXI4 Master write request, you need to model additional signals
wr_awid and wr_bid.

For more information, see Model Design for AXI4 Master Interface Generation.

 IP Core Generation and Hardware Deployment

3-25

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/integrate-hdl-ip-core-with-microchip-polarfire-soc.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/integrate-hdl-ip-core-with-microchip-polarfire-soc.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/xilinxsoc.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ref/intelsoc.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/model-design-for-axi4-master-interface-generation.html

Readback of AXI4 registers for the individual ports in HDL Workflow
Advisor
In the HDL Workflow Advisor, you can read back the AXI4 registers by using Enable readback on
AXI4 slave write registers option in the task Generate RTL Code and IP Core. The readback is
applied on the ports that are mapped to AXI4 registers.

In R2022a, HDL Coder has enhanced the AXI4 register readback functionality. You can now enable
readback on AXI4 registers for the individual port. For better analysis of a complex design that has
multiple ports, you can apply the readback option on selected ports to read values of the AXI4 write
register. Use the Enable write register readback option for the individual port in HDL Workflow
Advisor > Set Target Interface > Interface options to read values of the AXI4 write register.

The Enable write register readback has these dropdown options: inherit, on, and off. The table
lists the actions while using the Enable readback on AXI4 slave write registers and Enable write
register readback options in the HDL Workflow Advisor.

Enable Readback on AXI4
Slave Write Registers

(Global Readback Option)

Enable Write Register
Readback

(Port-Level Readback Option)

Readback Action for
Individual Port

On On Enable
On Off Disable
Off Inherit Disable
Off On Enable
Off Off Disable

R2022a

3-26

On Inherit Enable

For more details, see Inspect the Written Values of AXI4 Slave Registers by Using the Readback
Methods.

Supported FPGA synthesis tools
HDL Coder has been tested with these third-party FPGA synthesis tools:

• Xilinx Vivado 2020.2
• Intel Quartus Standard 20.1.1
• Microsemi Libero SoC 12.6

For more details, see HDL Language Support and Supported Third-Party Tools and Hardware.

Half-Precision data types for AXI4 interfaces in IP core generation
workflow
Half-Precision data types are widely used in deep learning and control system applications. These
data types require fewer FPGA resources compared to the single-precision. You can now use half-
precision data types for various Simulink blocks.

In R2022a, HDL Coder provides half-precision support in IP Core Generation workflow. You can now
use half-precision data types for AXI4, AXI4-Lite, and AXI4 stream interfaces. In the HDL Workflow
Advisor > Set Target Interface, you can map the half data types for the port with Target
Platform Interface set to AXI4, AXI4-Lite, or AXI4 stream.

You can generate RTL code and an IP core for your design that use half-precision data types for AXI4,
AXI4-Lite, and AXI4 stream interfaces. The half-precision data types for AXI4 interfaces are
supported in Xilinx, Intel, and Microsemi IP core generation workflow. Ports that have bus or vector
types also support half-precision data types for AXI4 and AXI4-Lite interfaces.

 IP Core Generation and Hardware Deployment

3-27

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/readback-AXI4-input-register.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/readback-AXI4-input-register.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/gs/language-and-tool-version-support.html

Single-Precision data types for AXI4 stream interface in IP core
generation workflow
You can now use single-precision data types for ports that are mapped to the AXI4 stream interface.
In the HDL Workflow Advisor > Set Target Interface, you can use single data types for the ports
that have Target Platform Interface set to AXI4 stream. You can generate RTL code and an IP
core for your design that use single-precision data types for the ports mapped to AXI4 stream
interface. The single-precision data types for AXI4 stream interface are supported in Xilinx, Intel, and
Microsemi IP core generation workflow. Ports that have bus or vector types also support single-
precision data types for AXI4 stream interface.

Automated workflow to access memory-mapped locations on FPGA
using HDL Workflow Advisor
Use the HDL Workflow Advisor tool to generate a host interface model. The host interface model
enables you to write and read from the memory-mapped locations on the target hardware over a JTAG
cable by using the AXI Manager Write and AXI Manager Read blocks. To create a host interface
model, follow these steps in the HDL Workflow Advisor tool.

• In step 1.1. Set Target Device and Synthesis Tool, set Target workflow to IP Core
Generation.

• In step 1.2. Set Target Reference Design, set Insert JTAG AXI Manager (HDL Verifier
required) to on.

• In step 1.3. Set Target Interface, map each DUT signal that you want to capture to the AXI4 or
AXI4-Lite interfaces.

• In step 4.2. Generate Software Interface, set Host target interface to JTAG AXI Manager
(HDL Verifier).

• In step 4.2. Generate Software Interface, generate the host interface model by selecting
Generate host interface model.

For an example, see Use JTAG AXI Manager to Control HDL Coder Generated IP Core.

To use this feature, you must install the HDL Verifier Support Package for Intel FPGA Boards or HDL
Verifier Support Package for Xilinx FPGA Boards. To access supported hardware for the HDL Verifier
product, see HDL Verifier Supported Hardware (HDL Verifier).

Xilinx Zynq Linux image for Zynq custom boards
An example is added that describes how to create a Xilinx Zynq Linux image for the Zynq custom
boards. Using this example, you can create the Linux image for booting up a Zynq custom board with
Linux operating system by using the MathWorks Buildroot system. For more details, see Author a
Xilinx Zynq Linux Image for a Custom Zynq Board by Using MathWorks Buildroot.

Functionality being removed or changed
Target Platform name for Altera Arria 10 SoC Development kit is changed
Behavior change

In the IP core generation workflow, the Target Platform Altera Arria 10 SoC Development
kit is renamed to Intel Arria 10 SoC Development kit.

R2022a

3-28

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/using-jtag-as-axi-master-to-control-hdl-ip-core.html
https://www.mathworks.com/help/releases/R2022a/hdlverifier/supported-hardware.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/xilinx-zynq-linux-image-for-custom-boards.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/xilinx-zynq-linux-image-for-custom-boards.html

Synthesis tool name for Microsemi Libero SoC will be changed
Behavior change in future release

In future releases, the synthesis tool name Microsemi Libero SoC will be changed to Microchip
Libero SoC.

Software interface script renamed to host interface script
Behavior change

In the IP core generation workflow, the Generate MATLAB software interface script parameter is
renamed to Generate host interface script, and the GenerateSoftwareInterfaceScript
property is renamed to GenerateHostInterfaceScript.

For more information on the host interface script, see Generate Host Interface Script to Probe and
Rapidly Prototype HDL IP Core.

 IP Core Generation and Hardware Deployment

3-29

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/generate-host-interface-script-to-probe-and-rapidly-prototype-hdl-ip-core.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/generate-host-interface-script-to-probe-and-rapidly-prototype-hdl-ip-core.html

Simscape Hardware-in-the-Loop Workflow

Optimal value of oversampling factor for nonlinear Simscape models
Previously, when you ran the Simscape HDL Workflow Advisor, the Oversampling factor was set to a
default value of 200 on the HDL implementation model containing nonlinear blocks that had a
partitioning solver. When you used this value to generate HDL code from the model, delay balancing
was sometimes unsuccessful. You had to increase this value to accommodate the latency introduced
by the floating-point operations. In some cases, to run your design at the maximum achievable target
frequency on the target design, you had to further adjust the oversampling factor.

Starting in R2022a, the Simscape HDL Workflow Advisor automatically sets an optimal value for the
Oversampling factor for your HDL implementation model that contains nonlinear blocks. You can
then generate HDL code from the model and run your design at an optimal achievable target
frequency.

Optimization of mode vector to index subsystem for higher clock
frequency
In R2022a, the Simscape to HDL workflow optimizes the mapping of mode vector to index subsystem
in the switched linear implementation models that require deployment onto FPGA. This optimization
helps to achieve a higher clock frequency.

Previously, the Simscape to HDL workflow used sequential comparison of mode vectors. This
comparison resulted in a long critical path in the hardware that degraded the clock frequency and
took a significant amount of time to compare the mode vectors.

Simscape to HDL Workflow Reference Applications
Simscape to HDL Workflow provides two examples:

• Deploy Simscape Grid Tied Converter Model to Speedgoat IO Module Using HDL Workflow Script

This example shows how you can deploy a three-phase two-level voltage source converter
connected to a low voltage grid modeled in Simscape onto a Speedgoat IO334 Simulink-
programmable I/O module. This converter topology uses subcycle averaging and runs with higher
pulse width modulation (PWM) resolution while still capturing switching events.

You can simulate the model sschdlexThreePhaseConverterWithGridExample.slx and
deploy it onto a Speedgoat FPGA I/O module.

• Generate HDL Code for Nonlinear Simscape Models by Using Partitioning Solver

This example illustrates how you can generate HDL code for a nonlinear Simscape model by using
Partitioning solver. You can then deploy the generated HDL code onto a Speedgoat FPGA I/O
module.

R2022a

3-30

https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/deploy-grid-tied-converter-to-speedgoat-io-modules-workflow-script.html
https://www.mathworks.com/help/releases/R2022a/hdlcoder/ug/Generate-HDL-Code-for-Nonlinear-Simscape-Models-Using-Partitioning-Solver.html

R2021b

Version: 3.19

New Features

Bug Fixes

Compatibility Considerations

4

Model and Architecture Design

RAM style attributes for Intel/Altera and Microchip
You can now map large memory blocks such as ultra from the Xilinx family and M144k from the
Quartus family on FPGAs during synthesis. To map these memory blocks, specify different attribute
values for the synthesis attribute RAM style. To specify these attributes in the Simulink HDL
workflow, configure appropriate attribute values for RAMDirective in HDL Block properties. For
more information, see RAMDirective.

To specify these attributes in the MATLAB HDL workflow, use the RAMDirective parameter value
pair for hdl.RAM instantiation or use hdlset_param. You can set the RAMDirective by using either
of these commands:

hRam = hdl.RAM(‘RAMType’, ‘Dual port’, ‘RAMDirective’, ‘ultra’);

or

hdlset_param(<ram_block_name>, ‘RAMDirective’, <attribute_value>);

HDL code check for trigonometric blocks
A Model Advisor check is added for trigonometric blocks that use the LUT-based approximation
method. This check runs on trigonometric blocks such as cos, sin, cos+jsin, and sincos. Set the
approximation method to Lookup. This Model Advisor check determines that code generation is not
supported for these trigonometric blocks with the LUT-based approximation. You can change the
functionality of the blocks for successful code generation.

Timestamp macro in custom file header comments
You can now include the arguments such as date, time, and timestamp in your generated HDL code.
In the custom file header and footer comments, these macros are supported for the arguments listed
in this table.

Argument Macro Syntax Output Format
Date __DATE__ DD-MM-YYYY
Time __TIME__ hh:mm:ss
Timestamp __TIMESTAMP__ DD-MM-YYYY hh:mm:ss

For more information, see Custom File Header Comment.

Enhanced multiple enumeration in Verilog
In R2021b, HDL Coder supports Verilog code generation for multiple enumerations that have the
same element names but different element values. For example, for these enumeration definitions:

classdef(Enumeration) Colors < Simulink.IntEnumType
 enumeration
 Red(1),
 Blue(2),
 Green(4),

R2021b

4-2

https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/block-implementation-parameters.html#mw_10175147-26c4-42de-887f-3893fa64157c
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/file-comment-customization.html#mw_17fc13e9-9712-4bb2-a001-7597e41e7a1f

 Yellow(8),
 Purple(16),
 Orange(32),
 Black(64)

 end
end

classdef(Enumeration) ColorsAlternate < Simulink.IntEnumType
 enumeration
 Red(10)
 end
end

This is the generated code:
parameter ColorsAlternate_red = 4'd10;
parameter Colors_Red = 7'd1, Colors_Blue = 7'd2, Colors_Green = 7'd4, Colors_Yellow = 7'd8, Colors_Purple = 7'd16, Colors_Orange = 7'd32, Colors_Black = 7'd64;

HDL Coder can now generate Verilog code from a design that contains two enumeration classes,
Color and ColorsAlternate, that both contain the same element name Red that have different
element values, 1 and 10 respectively.

HDL Industry Coding Standard check for the presence of assignments
to the same variable in multiple cascaded conditional regions
In R2021b, HDL Coder provides a coding standard to check for assignments to the same variable in
multiple cascaded control regions within the same process block. HDL Coder points to the blocks that
can generate such a coding style. If the style is not recommended for use in your production
workflow, consider an alternative coding style or replace the block pointed to by the rule. For more
information, see Cascaded Conditional Region Variable Assignments.

Layout choices for model generation
Starting in R2021b, the Layout style configuration parameter has been added to the Model
generation pane in HDL Coder properties. You can now select the layout style for your generated
model. The layout style has the options listed in this table:

Layout Style Description
None The generated model has no layout
Default The model is generated using the default HDL

Coder layout
AutoArrange The model is generated using the Simulink layout

For better layout visualization of your generated model, choose the appropriate layout style option
based on the design complexity. You can identify these layout style effects in the generated model
when you configure any optimization on your input model. For more information, see Layout Style.

For example, see the generated layout of the input model that uses different layout style options.

 Model and Architecture Design

4-3

https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/cascaded-conditional-region-variable-assignments.html
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/naming-options.html#mw_78d763a5-1a29-46a4-8d3c-910004fd81eb

R2021b

4-4

Block Enhancements

Newton-Raphson algorithm for Math Reciprocal block
HDL Reciprocal block functionality is now added to the Math Function block with reciprocal
function. The Math Function block now supports the Newton-Raphson algorithm method. You can
use following algorithm method and related HDL architecture for the Math Function block.

Algorithm Method (Block Parameters) Architecture (HDL Block Properties)
Exact Math

Reciprocal
ReciprocalRsqrtBasedNewton
ReciprocalRsqrtBasedNewtonSingleRate

Newton-Raphson ReciprocalNewton
ReciprocalNewtonSingleRate

Starting in R2021b, it is recommended to use the Math Function block with the Newton-Raphson
algorithm method instead of the HDL Reciprocal block. For details, see HDL Code Generation in Math
Function.

Magnitude square function in Math Function block
HDL code generation now supports the magnitude square function in the Math Function block.
Magnitude Square block is used in signal processing applications and supports fixed-point data types.
It also supports single and double floating-point data types. You can use complex data types for the
Magnitude Square block.

Half-precision data types for MATLAB Function block
HDL Coder now supports half-precision data types for the MATLAB Function block. The half-precision
support is added for the basic arithmetic and logical functions used in the MATLAB Function block.

Double-Precision data types for Logarithmic block
HDL code generation now supports double-precision data types for the Log function in the Math
Function block and the MATLAB Function block.

For-Generate loops for Reshape and Concat blocks
In R2021b, the coding style for Reshape and Concat blocks has been improved. The generated HDL
code has these coding style enhancements:

• For Reshape and Concat blocks, the HDL code is generated with For-Generate loops when you
select the target language as VHDL or System Verilog.

• By default, the loop unrolled code is generated for the Reshape block the when target language is
Verilog.

 Block Enhancements

4-5

https://www.mathworks.com/help/releases/R2021b/simulink/slref/mathfunction.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/mathfunction.html

The generated code has better code readability, reduced lines of code and reduced code generation
time. For example, this image shows code generated for the Reshape block with For-Generate
loops and without For-Generate loops.

For more information, see Unroll For-Generate Loops in VHDL code.

Fixed-point output types for Divide block and Reciprocal block
In R2021b, HDL Coder extends the support for the Divide and Reciprocal blocks. Prior to R2021b,
these blocks supported only output data types as Inherit: Inherit via internal rule. You
can now use these output data types for the blocks:

• Inherit: Keep MSB
• Inherit: Match scaling
• Inherit: Inherit via back propagation
• Inherit: Same as first input
• Integer types (uint8,int8,uint16,int16,uint32,int32,uint64,int64)
• Fixed point types

To use these output data types for Divide and Reciprocal blocks, select Architecture to ShiftAdd.
For more information, see Divide.

Limitation: Floating-point output data types are not supported for these blocks.

Enhanced HDL math library
HDLMathLib blocks now have enhanced output handling, where outputs are held to the previous
value and do not change when the validOut is low.

R2021b

4-6

https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/rtl-style.html#buiuh3k-196
https://www.mathworks.com/help/releases/R2021b/simulink/slref/divide.html

4-D and 5-D lookup table support
In R2021b, HDL Coder enhances the support for the direct lookup table and the n-D lookup table. The
code generation now supports 4-D and 5-D lookup tables. 4-D and 5-D lookup tables supports half,
single, and double data types. You can also use flat or linear interpolation for 4-D and 5-D lookup
tables. Linear interpolation is not supported for half data types. You can also use fully parallel and
serial implementation for 4-D and 5-D lookup tables. For more information, see n-D Lookup Table.

Improved denormal optimizations for half-precision data types
Half-precision types have a lower dynamic range, so it is beneficial to always have denormal logic
generated for the operation. When your design uses half-precision data types and Handle
Denormals is off, not having denormal logic sometimes can cause numeric issues for very small
values. To avoid such a scenario, make sure that denormals logic is on for the half-precision data
types.

In R2021b, HDL coder enhances the functionality of denormals logic for the floating-point library. A
new parameter value Auto is added for denormals logic. The default value for Handle Denormals is
set to Auto. This option maps the denormal to on when your design uses half-precision data types. It
maps denormal to off for single and double data types. The cost of adding denormal logic in
hardware for half-precision types is very low. You can control the option by explicitly turning the
denormal logic on or off. For more information, see Handle Denormals.

Improved multiplier partitioning DSP QoR
In R2021b, HDL Coder enhances the multiplier partitioning optimization for signed inputs. If you
apply Multiplier partitioning threshold on your model that has signed inputs, the multiply
operations are reduced by one when the inputs are signed to a partitioned multiplier. This
enhancement reduces the digital signal processor (DSP) consumption and improves frequency.

This enhancement is not applicable for a model that contains a subsystem with Distributed
pipelining turned on and DP priority set to NumericalIntegrity. In such cases, optimization is
performed by using an additional 2-bit multiply operation.

Reset minimization in Native Floating-Point (NFP) for ASIC
In R2021a, when you set MinimizeGlobalResets to on for a subsystem that had NFP IP blocks and
NoResetInitializationMode was set to None. The generated code did not have reset port. No
registers were initialized. When both settings were specified, the output propagated 'X' logic for the
simulation instead of a few initial clock cycles for NFP IP blocks. The number of initial clock cycles
for which output showed ‘X’ logic depended on the latency of the NFP IP blocks.

In R2021b, HDL Coder enhances the algorithm for MinimizeGlobalResets for Native Floating-
Point IP blocks. Now, when you specify the preceding settings, 'X' logic is propagated until only the
latency of the block.

Set-Reset (SR) flip-flops
In R2021b, HDL Coder supports code generation for an S-R flip-flop block. See S-R Flip-Flop.

 Block Enhancements

4-7

https://www.mathworks.com/help/releases/R2021b/simulink/slref/ndlookuptable.html
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/native-floating-point.html#bvb9n2t-1
https://www.mathworks.com/help/releases/R2021b/simulink/ref_extras/srflipflop.html

HDL Code Generation for Discrete State-Space block
In R2021b, HDL Coder supports code generation for the fixed-point Discrete State-Space block. See
Discrete State-Space.

Trigger and event modes for subsystems, MATLAB Function blocks,
and Stateflow blocks
Previously, HDL Coder supported only the rising and falling edge modes for blocks that support input
triggers and events. In R2021b, HDL Coder supports either mode for blocks that support input
triggers and events, such as:

• Trigger ports of subsystems. For more information, see Triggered Subsystem.
• Input events for Stateflow charts. For more information, see Activate a Stateflow Chart by Sending

Input Events (Stateflow).
• Input events for MATLAB Function blocks. For more information, see Update method.

Wireless HDL Toolbox Reference Applications: Implement 5G NR SIB1
recovery, WLAN receiver, and DVB-S2 PL header recovery
The NR HDL SIB1 Recovery (Wireless HDL Toolbox) reference application builds on the NR HDL MIB
Recovery (Wireless HDL Toolbox) design and shows how to implement system information block type
1 (SIB1) decoding. The NR HDL Downlink Receiver MATLAB Reference (Wireless HDL Toolbox)
example (renamed from "NR HDL Cell Search and MIB Recovery MATLAB Reference") now includes
cell search, MIB recovery, and SIB1 recovery.

The HDL Implementation of WLAN Receiver (Wireless HDL Toolbox) example is an extension to the
WLAN HDL Time and Frequency Synchronization example that was introduced in R2021a. The HDL
Implementation of WLAN Receiver example detects frame format and decodes signal and data fields
according to wireless local area network (WLAN) standards. This example supports a single-input
single-output (SISO) 20 MHz bandwidth option for non-high-throughput (non-HT), high-throughput
mixed mode (HT-MM), and very-high-throughput (VHT) frame formats.

The DVB-S2 HDL PL Header Recovery (Wireless HDL Toolbox) example implements Digital Video
Broadcasting Satellite Second Generation (DVB-S2) receiver synchronization and a physical layer
(PL) header recovery system that can handle radio frequency (RF) impairments to support DVB-S2
waveforms. The example shows how to perform frame synchronization and time, frequency, and
phase offset estimation and correction. It also shows how to decode the PL header information.

These examples support HDL code generation and are ready for deployment to hardware.

Wireless HDL Toolbox Blocks: Model WLAN LDPC decoder, CCSDS RS
decoder, DVBS2 symbol demodulator, and APP decoder
The WLAN LDPC Decoder (Wireless HDL Toolbox) block implements layered belief propagation with
min-sum approximation and normalized min-sum approximation algorithms for decoding low-density
parity-check (LDPC) codes according to these WLAN standards: 802.11n, 802.11ac, 802.11ax, and
802.11ad.

The CCSDS RS Decoder (Wireless HDL Toolbox) block decodes and recovers messages from a Reed-
Solomon (RS) codeword according to the Consultative Committee for Space Data Systems (CCSDS)

R2021b

4-8

https://www.mathworks.com/help/releases/R2021b/simulink/slref/discretestatespace.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/triggeredsubsystem.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/using-input-events-to-activate-a-stateflow-chart.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/using-input-events-to-activate-a-stateflow-chart.html
https://www.mathworks.com/help/releases/R2021b/simulink/ug/matlab-function-block-properties.html#mw_9c45e95c-d8fd-4967-94a7-ba471effad92
https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ug/nr-hdl-sib-recovery.html
https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ug/nr-hdl-mib-recovery.html
https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ug/nr-hdl-mib-recovery.html
https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ug/nr-hdl-cell-search-and-mib-recovery-ml-ref.html
https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ug/wlanhdlreceiver.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ug/wlanhdltimeandfrequencysynchronization.html
https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ug/dvbs2hdlplheaderecovery.html
https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ref/wlanldpcdecoder.html
https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ref/ccsdsrsdecoder.html

standard. The block supports RS codewords (255, k), where k is a message length of 239 or 223. The
block also supports shortened message lengths and interleaving depth values 1, 2, 3, 4, 5, and 8.

The DVBS2 Symbol Demodulator (Wireless HDL Toolbox) block demodulates complex constellation
symbols to a set of log-likelihood ratio (LLR) values. The block supports π/2-BPSK, QPSK, 8-PSK, 16-
APSK, and 32-APSK modulation types. It also supports multiple code rates according to the DVB-S2
standard. You can configure the modulation type and code rate during runtime while using this block.

The APP Decoder (Wireless HDL Toolbox) block decodes coded LLR values using the maximum a-
posteriori probability (MAP) decoding algorithm and serves as a basic building block to implement a
turbo decoder. The block accepts soft inputs and provides soft outputs, which can be useful for
iterative decoding. The block supports terminated and truncated modes and these decoding rates:
1/2, 1/3, 1/4, 1/5, 1/6, and 1/7.

These blocks provide an interface and architecture for HDL code generation with HDL Coder.

Multipixel-Multicomponent Video Streaming: Implement color space
conversion and demosaic interpolation algorithms for high-frame-rate
color video
The Color Space Converter (Vision HDL Toolbox) and Demosaic Interpolator (Vision HDL Toolbox)
Vision HDL Toolbox™ blocks now support multipixel-multicomponent streams.

The HDL implementation replicates the algorithm for each pixel in parallel.

The Color Space Converter block supports input matrices of NumPixels-by-3 values and output
matrices of NumPixels-by-NumComponents values, where NumComponents is 3 or 1. The Demosaic
Interpolator block accepts an input vector of NumPixels-by-1 values and returns an output matrix of
NumPixels-by-3 values. The ctrl ports remain scalar, and the control signals in the pixelcontrol
bus apply to all pixels in the matrix.

You can simulate System objects with a multipixel streaming interface, but System objects that use
multipixel streams are not supported for HDL code generation. Use the equivalent blocks to generate
HDL code for multipixel algorithms.

Reflection Padding: Pad image frames by reflecting around the edge
pixel
Pad the edge of a frame by reflecting around the edge-pixel value. This padding method helps reduce
edge contrast effects and can improve results for machine learning while maintaining the original
frame size.

 Block Enhancements

4-9

https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ref/dvbs2symboldemodulator.html
https://www.mathworks.com/help/releases/R2021b/wireless-hdl/ref/appdecoder.html
https://www.mathworks.com/help/releases/R2021b/visionhdl/ref/colorspaceconverter.html
https://www.mathworks.com/help/releases/R2021b/visionhdl/ref/demosaicinterpolator.html

To use this feature, set the Padding method parameter to Reflection on any of these blocks.

• Line Buffer (Vision HDL Toolbox)
• Image Filter (Vision HDL Toolbox)
• Bilateral Filter (Vision HDL Toolbox)
• Median Filter (Vision HDL Toolbox)
• Corner Detector (Vision HDL Toolbox)

For more information on padding methods, see Edge Padding (Vision HDL Toolbox).

R2021b

4-10

https://www.mathworks.com/help/releases/R2021b/visionhdl/ref/linebuffer.html
https://www.mathworks.com/help/releases/R2021b/visionhdl/ref/imagefilter.html
https://www.mathworks.com/help/releases/R2021b/visionhdl/ref/bilateralfilter.html
https://www.mathworks.com/help/releases/R2021b/visionhdl/ref/medianfilter.html
https://www.mathworks.com/help/releases/R2021b/visionhdl/ref/cornerdetector.html
https://www.mathworks.com/help/releases/R2021b/visionhdl/ug/edge-padding.html

Code Generation and Verification
Code View: View your generated HDL code directly in Simulink model
window
You can now view your generated HDL code alongside your model by using the Code view. Use this
integration between code and model to:

• Quickly navigate from model elements to their generated code. When you click on a block in the
model, the Code view highlights the code for the block and scrolls to the highlighted code lines.

• Trace lines of code to the model elements from which they were generated. In the Code view, click
the line number hyperlink or code comment link to highlight the block that the code line traces to.

• Customize your generated code and verify that the results are correct by viewing the code and the
model at the same time.

After you generate HDL code for your model, the Code view displays the generated code to the right
of your model. To manually open the Code view, on the Simulink toolstrip, click the View Code
button. At the top of the Code view, select the file that you want to display. You can dock or undock
the Code view from the editor and minimize or expand the Code view. You can also use rich text
capabilities such as code folding and hiding comments.

Stateflow multicycle path enhancements
In R2021a, when you sourced enable-based multicycle-path (MCP) constraints in the FPGA synthesis
tool to relax the timing constraints on multicycle data paths, you saw that the MCP constraints were

 Code Generation and Verification

4-11

not applied in the generated HDL code. Because HDL Coder generates MCP with timing controller
logic, the synthesis tool optimizes this timing controller logic to convert it to the single clock domain
design. The MCP constraints are not applied in the generated HDL code.

HDL Coder has improved the enable-based constraints algorithm to generate an MCP constraints file.
Starting in R2021b, when you source enable-based MCP constraints, the attribute direct_enable is
added to all the enable signals in your generated timing controller HDL code. Due to the
direct_enable attribute, the synthesis tool preserves the timing control logic and the MCP
constraints are applied in your design. This attribute is added to timing controller logic in both the
Verilog and VHDL designs. The attribute is supported in synthesis tools such as Xilinx Vivado, Intel
Quartus, and Intel Quartus Pro.

Register-to-register path info option not recommended in HDL Coder
In R2021b, it is not recommended to use Register-to-register path info for generating multicycle
path information. Use Enable-based constraints to meet the timing requirement of the multicycle
paths in your model. For more information, see Multicycle Path Constraints Parameters.

Compatibility Considerations
The Register-to-register path info option is removed from the Optimization pane in HDL Coder
Properties. You can still enable this option in the MATLAB command-line interface by using
hdlset_param or makehdl commands. HDL Coder will remove this functionality in future releases. It is
recommended to use Enable-based constraints for generating multicycle path information.

Execute chart at initialization option for Stateflow charts
In R2021b, HDL Coder supports disabling the Stateflow chart option Execute (enter) chart at
initialization. This option is useful for when you want your chart to begin executing from a
known configuration. This Stateflow option is available for Mealy and Classic charts, but not for
Moore charts. For more information, see Execute (enter) chart at initialization (Stateflow).

HDL code generation performance improvement for matrix
multiplication
HDL code generation for Simulink models that perform matrix multiplication operations by using the
DotProductStrategy property set to Fully Parallel (default) now has significant
performance improvement when you generate HDL code. For example, HDL code generation time for
a 16-by-16 fixed-point matrix multiplication now takes 17 seconds, whereas it previously took 328
seconds.

In R2021b, HDL Coder generates concise code by vectorizing matrix multiplication inner products to
create for-generate constructs and reduces the size of the generated model. For example, when you
have two matrices of size m-by-n and n-by-p, the generated model has one product block with m*n*p
vector size and n-by-1 adder blocks in a linear form that have m*p vector size. Prior to R2021b, the
generated model had m*n*p individual product blocks and (n-1)*m*p individual adder blocks. To
minimize multiplier and adder DSP consumption for Fully Parallel (default) matrix
multiplication, set a streaming factor for the parent subsystem. A streaming factor of m*n*p results
in a full serialization of the multiplication operators and near full serialization of the addition
operations. Adding a sharing factor of n-1 can fully share the data-dependent addition operations.

R2021b

4-12

https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/multicycle-path-constraints-parameters.html
https://www.mathworks.com/help/releases/R2021b/stateflow/ug/specifying-chart-properties.html#mw_b5b1852c-6797-48c0-9f6b-754fb1303b08

Compatibility Considerations
In R2021b, when you set the DotProductStrategy property to Fully Parallel, you cannot use a
sharing factor for successful resource sharing. Use a streaming factor instead. The Serial
Multiply-Accumulate and Parallel Multiply-Accumulate settings for
DotProductStrategy are not affected by the new optimization.

To replicate the old Fully Parallel behavior, use the new Fully Parallel Scalarized
option. This new option for the legacy behavior is recommended for only smaller matrix sizes.

 Code Generation and Verification

4-13

Speed and Area Optimizations

Enhanced sharing and streaming optimizations for matrix-types
You can now configure sharing and streaming optimizations at the same time on a model that has
matrix type inputs. To enable these optimizations on your input model, specify sharing and streaming
factors in HDL block properties.

User control for tunable parameter processing and improve code
generation time
You can now disable the design under test (DUT) port generation for tunable parameters by disabling
Enable HDL DUT Port Generation for Tunable Parameters. Optimize your code generation
time by disabling the DUT inport generation for tunable parameters and DUT output port generation
for test points.

Improved zero-protection in Simulink-to-HDL
In R2021b, HDL Coder inserts zero-protection switches that prevent input zeros from pipeline initial
values reaching blocks that do not work well with zero values. For example, consider the following
DUT and block-specific properties:

The DUT has one input pipeline register specified in the DUT's HDL Block parameters. The selector
blocks use one-based indexing, so a zero at the index port is an invalid argument. Prior to R2021b,
the generated model failed during simulation. In R2021b, for the preceding model, you see a zero-
protection switch is correctly applied in the generated model and in the generated code. The

R2021b

4-14

simulation of the generated model is successfully completed.

To avoid protection logic, minimize zeros feeding into blocks that do not expect zero run-time values.

Minimize intermediate initialization of variables in generated HDL
code
In R2021b, HDL Coder performs optimizations during code generation to reduce area usage while
maintaining functionality and performance. For example, this figure shows the difference in the

 Speed and Area Optimizations

4-15

generated code prior to R2021b and code generated in R2021b.

Improved optimizations for conditional subsystems
You can now more effectively apply optimizations such as streaming, resource sharing, and clock rate
pipelining to enabled and triggered subsystems that contain integer delays that have a delay length
greater than one. For example, you can apply resource sharing where you have the same resource
across multiple conditional subsystems within your DUT.

R2021b

4-16

Optimizations will not be applied if the configuration parameter TransformNonZeroInitValDelay
is disabled and the delay has a nonscalar expandable initial value.

Delay-balancing behavior standardization in BalanceDelays=off
network
Turning off delay balancing during code generation is discouraged. If any optimizations are enabled,
you must balance any pipelines introduced as a part of those optimizations. If you do not balance
automatically inserted pipeline delays, you might encounter issues in generated code deployed in
hardware. You can select an additional diagnostic option check TreatBalanceDelaysOffAs to
detect the presence of unbalanced delays in the generated HDL code to highlight that
BalanceDelays is set to off. The goal is to avoid unbalanced delays in your model. For more
information, see Check for presence of unbalanced delays in generated HDL code.

Starting in R2021b, the BalanceDelays option is no longer a global option in the model
configuration parameters. If you decide to disable delay balancing for your model by using the
command line (not recommended), see Delay Balancing Considerations. If you turn off
BalanceDelays, also turn off any features that automatically generate pipelines or add latency, such
as optimizations like resource sharing, streaming, pipelining, or enabling the MapToRAM HDL block
property of a lookup table (LUT) block. Manually balance the delays instead.

Lookup Table blocks mapping to RAM and adaptive pipelining
In R2021b, the mapping of Lookup Table blocks to RAM is not associated with the adaptive pipelining
optimization option. You can now independently enable the mapping of Lookup Table blocks to RAM
by using the Map lookup tables to RAM option. For more information, see Map lookup tables to
RAM. Select this option to add non-reset delays next to the lookup tables and to save resources on the
target FPGA hardware by mapping lookup tables to block RAM.

In R2021b, the default MapToRAM HDL block property default is Inherit. The default option
prevents you from having to search through your model and individually set the MapToRAM option to
on for each Lookup Table block.

Prior to R2021b, when you enabled adaptive pipelining, Lookup Table blocks were mapped to RAM.
Adaptive pipelining inserted pipeline registers at the input port, output port, or both input and output
ports of certain blocks to create patterns that efficiently mapped blocks to DSP units on the target
FPGA device. You should enable adaptive pipelining based on your design requirements. For more
information, see Design Patterns That Require Adaptive Pipelining.

You can highlight the Lookup Table blocks in your model that are mapped to RAM by enabling
Highlight lookup tables mapped to RAM. For more information, see Highlight lookup tables
mapped to RAM.

 Speed and Area Optimizations

4-17

https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/diagnostics-for-reals-and-black-box-interfaces.html#mw_93a64c6b-e2e5-4e42-ad28-5c7deba466bd
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/delay-balancing.html#mw_a500686a-016f-44ab-916d-e1ca3d6d198c
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/pipelining-parameters.html#mw_8bb217c0-0bd2-4d7e-9e70-499cd4d9709c
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/pipelining-parameters.html#mw_8bb217c0-0bd2-4d7e-9e70-499cd4d9709c
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/designs-that-require-adaptive-pipelining-to-meet-timing-requirements.html
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/diagnostics-for-optimizations.html#mw_af8d3bae-2de8-4178-a14a-14a7ee29fe10
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/diagnostics-for-optimizations.html#mw_af8d3bae-2de8-4178-a14a-14a7ee29fe10

IP Core Generation and Hardware Deployment
Microsemi Libero System On A Chip (SoC) support for IP core
generation workflow
In R2021b, HDL Coder enhances support for the Microsemi Libero SoC synthesis tool. You can now
use the Microsemi Libero SoC tool for IP core generation workflow in HDL Workflow Advisor. Prior to
R2021b, Microsemi Libero SoC tool supported only the Generic/ASIC FPGA workflow.

To generate an IP core by using the Microsemi Libero SoC synthesis tool, use Generic Microchip
Platform as your Target Platform. The support extends for Microchip FPGA families such as
IGLOO 2, RTG4®, Polarfire, and SmartFusion® 2. You can use the generic microchip platform with the
external ports interface and AXI4 (AXI4 Master and AXI4 slave) interface. AXI4-Lite interface is only
supported for the Polarfire FPGA.

Using the IP core generation workflow, you can instantiate the IP core to the Microsemi Libero SoC
SmartDesign. HDL Coder generates a TCL file to instantiate the IP core in Microsemi Libero SoC
SmartDesign. Then you can generate the bitstream for your design by using the Microsemi Libero
SoC.

MATLAB Prototyping API Enhancements: Support complex data in AXI4
Stream Interface and input register readback in AXI4 Interface
In R2021b, HDL Coder has enhanced the MATLAB prototyping API to support complex data and input
register readback.

HDL Coder supports complex data type streaming on the AXI4 stream interface. You can now specify
the complex data for your DUT ports in the hdlcoder.DUTPort API. A new property IsComplex is
added in hdlcoder.DUTPort API to set the complex data type for the ports. The ports support
complex data for a 64-bit word length.

You can readback the input registers for your DUT ports in the hdlcoder.DUTPort API by using the
AXI-Slave interface. The readback feature is supported in both the Xilinx and Intel reference designs.
When you select Enable readback on AXI4-Slave write registers, in your generated setup script,
the input ports directions are mapped to the INOUT in hdlcoder.DUTPort API.

Upgrade to Intel Quartus Pro 20.2
HDL Coder has been tested with Intel Quartus Pro 20.2.

Inserted JTAG AXI Master at fixed frequency to avoid timing issue
In R2021a, when you inserted MATLAB JTAG AXI Master to control a generated IP Core and set the
target frequency to greater than 100 MHz, you might have experienced timing failure for your
reference design.

In R2021b, HDL Coder resolves the timing failure issue by controlling the clock frequency of the
MATLAB JTAG AXI Master based on the target frequency of the reference design. The clock
frequency of the inserted MATLAB JTAG AXI Master is fixed to 50 MHz when the target frequency of
your design exceeds 100 MHz. For the target frequency less than or equal to 100 MHz, the MATLAB
JTAG AXI Master is driven at the same clock frequency as your Design Under Test (DUT) clock.

R2021b

4-18

Unsupported tool version in HDL workflow advisor
In R2021b, a new UI check box Allow unsupported version is added to the HDL Workflow Advisor
in the Set Target Device and Synthesis Tool dialog box. HDL Workflow Advisor now runs the check
for the unsupported tool version and asks whether you want to use the unsupported tool version. You
can use the unsupported tool version by selecting the Allow unsupported version checkbox and
creating a project in the HDL Workflow Advisor.

This option is supported for all the third-party FPGA synthesis tools. The support is extended for
these targeted workflows:

• Generic ASIC/FPGA
• IP Core Generation
• FPGA Turnkey
• Simulink Real-Time™ FPGA I/O
• FPGA-in-the-Loop

HDL Coder continuously upgrades support for the latest tool version. It is recommended to use the
supported tool version in the HDL Workflow Advisor for better synthesis results. For more
information, see HDL Workflow Advisor Tasks.

Multicycle path constraint packaging for IP core
In R2021b, when you apply the multicycle path constraints in the IP core generation workflow, the
generated MCP constraints file is now packaged with the IP core. With this enhancement, you can
directly use the generated MCP constraints to the IP core in the Vivado and Qsys project. You do not
need to manually insert the constraints by using a separate TCL script. HDL Coder supports this
packaging for the Xilinx and Intel workflows.

HDL Coder Workflow Advisor: Option to expose DUT clock enable port
and clock enable output port
In R2021b, the HDL Coder Workflow Advisor enables you to expose the design under test (DUT) block
clock enable input and clock enable output port. You can use the clock enable input port to trigger
the DUT from upstream IPs. Use the clock enable output port to drive or synchronize with other
custom IPs.

Devicetree generation for IP cores
When using the Hardware-Software (HW/SW) codesign workflow from HDL Coder, you must
configure the ARM® processor with a correct devicetree. A devicetree is a file that describes
hardware devices accessible to the ARM processor. On system-on-chip (SoC) boards, the devicetree
must include details about accessing the FPGA interfaces.

Previously, HDL Coder allowed only fixed, precompiled devicetree files to be specified for a reference
design. In R2021b, HDL Coder allows devicetree source files to be specified for boards and reference
designs. It also supports the dynamic generation of parts of the devicetree corresponding to the HDL
Coder generated IP core. You can:

• Register new devicetree files to the board plugin file and reference design plugin file by using the
addDeviceTree function.

 IP Core Generation and Hardware Deployment

4-19

https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/hdl-workflow-advisor-tasks.html

• Specify an include file to compile the code against by using the
addDeviceTreeIncludeDirectory function.

• Declare the existence of a processing system (PS) in the reference design by using the
HasProcessingSystem function.

• Enable generation of devicetree nodes for the HDL Coder generated IP core by using the
GeneratedIPCoreDeviceTreeNodes function.

• Add AXI4-Slave and AXI4-Stream interfaces to the devicetree if these interfaces connect to the
ARM processor. Use the addAXI4SlaveInterface and addAXI4StreamInterface functions.

See Generate Device tree for IP Core.

Updates to addAXI4StreamInterface function for fpga hardware
connection object
In R2021b, you can specify the read data and write data widths on the AXI4-Stream interface for your
fpga hardware connection object by using the ReadDataWidth and WriteDataWidth name-value
arguments. The allowed width values are 8, 16, 32, 64, and 128. The HDL Coder generated software
interface script includes the ReadDataWidth and WriteDataWidth name-value arguments.

Reset AXI4-Stream TLAST counter
When mapping DUT ports to an AXI4-Stream master interface, you can optionally model a TLAST
protocol signal. If you do not model the TLAST signal, HDL Coder generates this signal for you. It also
generates a programmable register in the IP core that contains the frame length. In the generated IP
core, the TLAST signal is asserted when the number of valid samples counts up to the frame length.
In previous releases, changing the frame length through the programmable register did not reset the
state of the counter, causing the TLAST signal to not asset properly for partial frame transfers.
Starting in R2021b, if the frame length register is changed in the middle of a frame, the counter state
is reset to zero and the TLAST signal is asserted early.

HDL Coder Workflow Advisor: Improved code generation times
In R2021b, HDL Coder improves HDL Coder Workflow Advisor code generation times when using the
MATLAB command-line interface by reducing the number of times a model is compiled. The code
generation time has been reduced by a factor of three when using the HDL Coder Workflow Advisor
command-line interface workflow. For example, HDL Coder Workflow Advisor command-line code
generation times for models prior to R2021b that took 60 minutes now takes 20 minutes.

HDL Coder Workflow Advisor: Resource and timing report
enhancement
In R2021b, the resource report and timing report of the HDL Workflow Advisor has been enhanced.
The resource summary now shows the available FPGA resources such as LUT Slices, DSPs, Slice
Registers, and many more in a target device and its utilization percentage in your design. The timing
summary shows clock frequency of the design. You can view this enhanced report in HDL Workflow
Advisor UI and from MATLAB command-line interface. This enhancement works for the Xilinx and
Intel (Altera®) FPGA devices.

R2021b

4-20

https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/generate-devicetree-for-ip-core.html

Data type for Speedgoat PCIe Interface: Map bus data types to
Speedgoat PCIe Interface
When using the Simulink Real-Time FPGA I/O workflow, in the Target Platform Interface table, you
can map bus signals at the DUT ports to PCIe interfaces.

The bus signals workflow includes an IP Core Generation report that displays address offsets of
PCIe interface-accessible registers generated for each bus element scalar and vector datatype in the
Register Address Mapping section. The top-level and sub-level bus data types do not have a
register offset address. The address mapping for scalar and vector bus elements is not contiguous.
See Map Bus Data Types to PCIe Interface.

HDL Coder Support Package for Xilinx RFSoC Devices: Generate IP
core and deploy reference designs on Xilinx RFSoC devices
HDL Coder Support Package for Xilinx RFSoC Devices enables the generation of IP cores that can
integrate into RFSoC devices. You can generate an HDL IP core by mapping the DUT ports to I/Os
and AXI interfaces. This feature enables you to connect your algorithm to the RF tiles and the
external DDR memory.

This support package includes reference designs for popular RFSoC development kits, including
Xilinx Zynq UltraScale+ RFSoC ZCU111 and Xilinx Zynq UltraScale+ RFSoC ZCU216 evaluation kits.

You can use the IP core generation workflow to automate integration, execution, and verification of
reference designs for RFSoC platforms. You can also interactively send and retrieve a frame of data
to an FPGA. You can control the AXI registers in your generated IP core from MATLAB by using the
generated MATLAB software interface script. For more information, see Generate Software Interface
Script to Probe and Rapidly Prototype HDL IP Core.

You can use the SoC Blockset™ product for system-level modeling of RFSoC devices, exportation of
custom reference designs for Xilinx RFSoC devices, and deployment of complete SoC applications,
including executables for ARM Cortex®-A53 processors.

For the complete documentation of this support package, see HDL Coder Support Package for Xilinx
RFSoC Devices.

 IP Core Generation and Hardware Deployment

4-21

https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/map-bus-data-types-to-pcie-interface.html
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/generate-software-interface-to-probe-and-rapidly-prototype-the-generated-hdl-ip-core.html
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/generate-software-interface-to-probe-and-rapidly-prototype-the-generated-hdl-ip-core.html
https://www.mathworks.com/help/releases/R2021b/supportpkg/xilinxrfsocdevices/index.html
https://www.mathworks.com/help/releases/R2021b/supportpkg/xilinxrfsocdevices/index.html

Simscape Hardware-in-the-Loop Workflow

Support multiple solver times in Simscape models
In R2021b, Simscape HDL Workflow Advisor enables you to apply different solver times to different
domains within the same Simscape model. Previously, in Simscape HDL Workflow Advisor, you could
not apply different solver times to different domains within the same Simscape model.

Enable FPGA parameters in the protected model
Previously, simulation of protected models failed due to a mismatch in the parameter values between
the protected model and top model:

• Family
• Device Name
• Package Name
• Speed Value
• Target Frequency

In R2021b, HDL Coder enables a difference in the values of these parameters between the protected
model and the top model so that you can simulate and generate HDL code for top model and
protected models while retaining top model synthesis parameters settings.

RAM mapping for partition solver
In R2021b, HDL Coder optimizes the resource utilization of your Simscape models deployed to FPGAs
by enabling you to map state-space parameters to RAM. For more information, see Map State Space
Parameters to RAMs.

R2021b

4-22

https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/simscape-hdl-workflow-advisor-tips-and-guidelines.html#mw_a3f4e7c0-0e3d-4b66-9ffa-722ac47846f3
https://www.mathworks.com/help/releases/R2021b/hdlcoder/ug/simscape-hdl-workflow-advisor-tips-and-guidelines.html#mw_a3f4e7c0-0e3d-4b66-9ffa-722ac47846f3

R2021a

Version: 3.18

New Features

Bug Fixes

Compatibility Considerations

5

Model and Architecture Design

Half precision floating-point example for Field-Oriented Control
algorithm
You can now generate HDL code for the Field-Oriented Control (FOC) algorithm for a Permanent
Magnet Synchronous Machine (PMSM) that is implemented by using half-precision floating-point
types.

See Floating Point Support: Field-Oriented Control Algorithm.

This table compares synthesis results for half-precision floating-point type, single-precision floating-
point type, and signed fixed-point type with word length 16 and fraction length 10
(fixdt(1,16,10)) for a Xilinx Virtex-7 xc7v2000t device.

Resources FOC_Half FOC_Single FOC_Sfix16_En10
Fmax (MHz) 100.47 82.69 63.123
Slices 3348 5928 336
LUTs 9539 15853 1119
DSPs 19 40 21

Comments tab in Global Settings pane and option to disable
comments
In the Configuration Parameters dialog box, on the HDL Code Generation > Global Settings tab,
you can now use a new Comments tab to specify comment options for HDL code generation. On this
tab, you can specify whether to enable or disable the comment options by using a new Enable
Comments check box.

See Generate Code with Annotations or Comments.

HDL Code Advisor check for file extension based on target language
Previously, the HDL Code Advisor check Check VHDL file extension identified whether the file
extension is specified as .vhd when you generate code with VHDL as the target language.

In R2021a, the check is renamed as Check file extension folder. When you run the check, it also
identifies whether the file extension is specified as .v when you generate code with Verilog as the
target language.

See Check file extension.

Hard Floating Point Support using Intel Quartus Pro
In R2021a, you can select Intel Quartus Pro as the target synthesis tool when using the makehdl
function and the Generic ASIC/FPGA workflow. These limitations apply when using the Intel Quartus
Pro tool:

R2021a

5-2

https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/single-precision-field-oriented-control-pmsm-model.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/annotating-generated-code-with-comments-and-requirements.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/check-vhdl-file-extension.html

• The HDL code generation language must be set to VHDL. For more information, see Language
• The floating-point library must be set to Altera Megafunctions (ALTERA FP FUNCTIONS).

For more information, see Floating Point IP Library

 Model and Architecture Design

5-3

https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/target.html#buiuh3k-20
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/library.html

Block Enhancements

Enhancement to parameterized HDL code generation for 1-D and 2-D
mask values
You can now specify 1-D vectors and 2-D matrices as mask values and generate parameterized HDL
code from the masked subsystems by using the Generate parameterized HDL code from masked
subsystem parameter.

HDL code generation for For Each Subsystem block with 1-D and 2-D
partitioning of mask parameters
You can now generate HDL code for the For Each Subsystem block with 1-D and 2-D partitions of
mask parameter values. To partition the mask parameters, in the Parameter Partition tab of the For
Each block, select each mask parameter that you want to partition, and then specify the Partition
Dimension and Partition Width.

See Repeat an Algorithm Using a For Each Subsystem.

HDL code generation for For Each Subsystem block with matrix ports
In R2021a, you can use 2-D matrices at the ports of the For Each Subsystem block for HDL code
generation. You can partition the input into elements, vectors, and subarrays. After performing the
computations, the elements are concatenated at the output to form the 2-D matrix result.

See Generate HDL Code for Blocks Inside For Each Subsystem.

HDL code generation for Interval blocks and additional Detect blocks
HDL Coder now supports code generation for these blocks:

• Detect Fall Negative
• Detect Fall Nonpositive
• Detect Rise Nonnegative
• Detect Rise Positive
• Interval Test
• Interval Test Dynamic

You can also access these blocks from the HDL Coder > Logic and Bit Operations in the Simulink
Library Browser.

ShiftAdd architecture for Product block to avoid DSP consumption
In R2021a, you can use the ShiftAdd architecture for the Product block. Use this architecture to
map the Product block implementation to lookup tables instead of DSP units on the target FPGA
device because it performs multiple shift and add operations.

See UsePipelines.

R2021a

5-4

https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/rtl-style.html#buiuh3k-215
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/rtl-style.html#buiuh3k-215
https://www.mathworks.com/help/releases/R2021a/simulink/slref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/foreach.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/foreach.html
https://www.mathworks.com/help/releases/R2021a/simulink/ug/repeat-an-algorithm-using-a-for-each-subsystem.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/generate-hdl-code-for-blocks-inside-for-each-subsystem.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/detectfallnegative.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/detectfallnonpositive.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/detectrisenonnegative.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/detectrisepositive.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/intervaltest.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/intervaltestdynamic.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/product.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/block-implementation-parameters.html#mw_ca10b040-2a21-431a-b25a-0ca430d0962c

HDL Coder library for fixed-point mathematical function blocks with
latency
You can now use a HDLMathLib library to generate HDL code for fixed-point mathematical function
blocks. The library includes these blocks with control ports:

• Sqrt
• atan2
• Sin
• Cos
• Sincos
• Cos+jSin
• Divide
• Reciprocal

To use these blocks in your model, at the MATLAB Command Window, enter:

HDLMathLib

For examples that describe more about the blocks and how to use them, see Implement Control
Signals Based Mathematical Functions using HDL Coder.

Count hit port for HDL Counter block to indicate when count value
resets
In the Block Parameters dialog box of the HDL Counter block, you can now specify a Count hit port.
This port indicates when the counter resets by outputting the value 1 when the count value resets to
the Initial value. The Count hit port port and Count direction port are mutually exclusive.

3-D lookup table support
Starting in R2021a, HDL Coder supports 3-D direct lookup tables and 3-D n-D lookup tables. When
you use inputs and breakpoints that are floating-point values, use 3-D n-D lookup tables. When you
use inputs that are fixed-point values, use 3-D direct lookup tables. 3-D n-D lookup tables support flat
and linear interpolation from your table data. Floating-point support for the blocks is limited to
single, double, and half data types for HDL code generation.

See Direct Lookup Table (n-D), n-D Lookup Table.

HDL Code Generation for Data Type Conversion block supports
enumerated data types
You can now use enumerated signals at the ports of the Data Type Conversion block for HDL code
generation. You can use the Data Type Conversion block to convert the enumeration data to integer
or integer-to-enumeration data. Specify your enumerated data to your Data Type Conversion block.
For example:
Simulink.defineIntEnumType('ModelName', ...
{'Red','Yellow','Orange','Blue','Green'},[40;50;60;70;80],'DefaultValue','Red');

 Block Enhancements

5-5

https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/implement-control-signals-based-functions-using-hdl-coder.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/implement-control-signals-based-functions-using-hdl-coder.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ref/hdlcounter.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/ndlookuptable.html
https://www.mathworks.com/help/releases/R2021a/simulink/slref/datatypeconversion.html

Enhancement to HDL code generation for Sqrt block
In R2021a, HDL code generated for a Sqrt block with its Architecture set to SqrtFunction and
UseMultiplier set to off has improved area and operating frequency compared to previous releases.

For example, this table illustrates the performance of the square root operation by setting
UseMultiplier to off, and LatencyStrategy to inherit for a Xilinx device.

UseMultiplier Fmax (MHz) LUTs DSP Slices
off 345 543 255
on 235 921 423

New HDL-optimized Simulink blocks for reciprocal, divide, and modulo
Starting in R2021a, Fixed-Point Designer™ has additional Simulink blocks for performing reciprocal,
division and modulo operations:

• Complex Divide HDL Optimized
• Real Divide HDL Optimized
• Real Reciprocal HDL Optimized
• Divide by Constant HDL Optimized
• Modulo by Constant HDL Optimized

These blocks use hardware-friendly control signals and provide an efficient hardware
implementation. These blocks support HDL code generation using HDL Coder.

Reduced HDL resource utilization in fixed-point matrix library blocks
In R2021a, blocks in the Fixed-Point Designer HDL Optimized > Matrices and Linear Algebra
library that operate on complex inputs have improved algorithms to reduce resource utilization on
hardware-constrained target platforms.

Wireless HDL Toolbox Reference Applications: Implement 5G NR MIB
recovery for FR2, OFDM interleaver and deinterleaver, and WLAN time
and frequency synchronization
The NR HDL MIB Recovery for FR2 (Wireless HDL Toolbox) reference application builds on the NR
HDL MIB Recovery (Wireless HDL Toolbox) reference application by adding support for millimeter
wave frequencies.

The HDL OFDM Transmitter (Wireless HDL Toolbox) and HDL OFDM Receiver (Wireless HDL
Toolbox) reference applications include these enhancements:

• Interleaver and deinterleaver blocks are added to the header and data chain blocks in transmitter
and receiver designs to improve burst error performance. For more information about interleaving
and deinterleaving, see the HDL Interleaver and Deinterleaver (Wireless HDL Toolbox) example.

• The header field cyclic redundancy check (CRC) polynomial length is increased from 8 bits to 16
bits to improve error detection performance.

R2021a

5-6

https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/complexdividehdloptimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/realdividehdloptimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/realreciprocalhdloptimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/dividebyconstanthdloptimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/modulobyconstanthdloptimized.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ug/nr-hdl-mib-recovery-fr2.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ug/nr-hdl-mib-recovery.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ug/nr-hdl-mib-recovery.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ug/hdlofdmtransmitter.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ug/hdlofdmreceiver.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ug/hdlinterleaveranddeinterleaver.html

• An input valid port is added to the transmitter to access payload data from an external source.

The WLAN HDL Time and Frequency Synchronization (Wireless HDL Toolbox) example shows how to
perform packet detection and time and frequency synchronization operations according to wireless
local area network (WLAN) standards 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, and 802.11ax.
These operations are essential for proper demodulation and decoding of packet information. This
example supports 20, 40, and 80 MHz bandwidth options.

These examples support HDL code generation and are ready for deployment to hardware.

Wireless HDL Toolbox Blocks: Model OFDM Equalizer, NR CRC Encoder,
and NR CRC Decoder
The OFDM Equalizer (Wireless HDL Toolbox) block equalizes OFDM data using a channel estimate
and noise variance in the frequency domain. The block uses zero forcing (ZF) and minimum mean
square error (MMSE) equalization methods.

The NR CRC Encoder (Wireless HDL Toolbox) block generates cyclic redundancy check (CRC) code
bits and appends them to input data. The NR CRC Decoder (Wireless HDL Toolbox) block detects
errors in input data using CRC bits. The blocks support these six cyclic generator polynomials
specified in the 5G NR standard: CRC6, CRC11, CRC16, CRC24A, CRC24B, and CRC24C.

External Memory Modeling Examples: Model and deploy streaming
video algorithms that require random access to memory (requires SoC
Blockset product)
The Vertical Video Flipping Using External Memory (Vision HDL Toolbox) example shows how to use
SoC Blockset blocks to model random-access external memory for streaming vision applications.
Then, to generate code for FPGA and processor designs, and deploy the design on a board, the
example uses the SoC Builder tool.

The Contrast Limited Adaptive Histogram Equalization with External Memory (Vision HDL Toolbox)
example shows how to use the SoC Blockset workflow to model frame buffer memory for a CLAHE
design.

Multipixel-Multicomponent Video Streaming: Implement Pixel Stream
Aligner, Pixel FIFO, and ROI Selector blocks for high-frame-rate color
video
The Pixel Stream Aligner (Vision HDL Toolbox), Pixel Stream FIFO (Vision HDL Toolbox), and ROI
Selector (Vision HDL Toolbox) blocks now support streams that are both multicomponent and
multipixel.

The HDL implementation replicates the algorithm for each pixel and component in parallel.

The blocks support input and output matrices of NumPixels-by-NumComponents pixels. The ctrl
ports remain scalar, and the control signals in the pixelcontrol bus apply to all pixels in the
matrix.

You can simulate System objects with a multipixel streaming interface, but they are not supported for
HDL code generation. Use the equivalent blocks to generate HDL code for multipixel algorithms.

 Block Enhancements

5-7

https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ug/wlanhdltimeandfrequencysynchronization.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ref/ofdmequalizer.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ref/nrcrcencoder.html
https://www.mathworks.com/help/releases/R2021a/wireless-hdl/ref/nrcrcdecoder.html
https://www.mathworks.com/help/releases/R2021a/visionhdl/ug/ext-mem-with-soc-blockset.html
https://www.mathworks.com/help/releases/R2021a/visionhdl/ug/contrast-adaptive-histogram-equalization-ext-mem.html
https://www.mathworks.com/help/releases/R2021a/visionhdl/ref/pixelstreamaligner.html
https://www.mathworks.com/help/releases/R2021a/visionhdl/ref/pixelstreamfifo.html
https://www.mathworks.com/help/releases/R2021a/visionhdl/ref/roiselector.html
https://www.mathworks.com/help/releases/R2021a/visionhdl/ref/roiselector.html

Functionality being removed or changed
The HDL Reciprocal block is not recommended
Still runs

The HDL Reciprocal block is not recommended. This block has been moved from the HDL Coder/
Math Operations library to the Simulink/Simulink Extras/Additional Math library. Use the
reciprocal function with the Newton-Raphson method in the Math Function block instead. Existing
models continue to work.

R2021a

5-8

https://www.mathworks.com/help/releases/R2021a/simulink/slref/mathfunction.html

Code Generation and Verification

Improvement to HDL code generated for Stateflow Moore Chart blocks
Starting in R2021a, the generated HDL code for Stateflow Moore Chart blocks complies with HDL
coding standards. The generated HDL code for Moore Chart blocks is also more structured and
readable because it uses separate process or always statements for updating the state variables
and computing the next state.

Stateflow Chart property Initialize Outputs Every Time Chart Wakes
Up cleared for HDL code generation
You can now clear the Stateflow Chart property Initialize Outputs Every Time Chart Wakes Up
for HDL code generation. When the property is disabled, the Moore Chart includes an additional
register that holds the previous value instead of passing the initial value to the output when the Chart
wakes up.

See Generate HDL for Mealy and Moore Finite State Machines.

HDL block property GenericList for Subsystem blocks with BlackBox
architecture
Starting in R2021a, when you generate VHDL code, you can specify whether to flatten the vector
ports into a set of scalar ports only at the DUT level instead of the entire model. This optimization
speeds up code generation especially for large models that have many vector inputs.

This setting has been renamed as Scalarize ports. You can specify this setting when generating HDL
code for the MATLAB to HDL workflow and for your Simulink model by using Scalarize ports
parameter. See Scalarization of Vector Ports in Generated VHDL Code

Single file for identical Simulink systems (Atomic and Virtual)
Starting in R2021a, HDL Coder can identify logically identical Simulink subsystems and generate a
single reusable file to represent the subsystem logic. You can generate this reusable logic regardless
of whether the system is marked 'Atomic' or 'Virtual'. This file represents and instantiates
multiple identical systems. At the command line, you can toggle this feature by setting the
SubsystemReuse flag to these options:

• 'Atomic and Virtual': Causes the code generator to create a single reusable file for multiple
identical systems.

• 'Atomic Only': The code generator creates reusable code only for atomic systems. This option
is the default setting.

Setting SubsystemReuse to 'Atomic and Virtual' reduces artificial algebraic errors and
improves the recognition of identical subsystems, irrespective of their topology within the rest of the
design. Identification of similar subsystems can help resource sharing.

To set these values to your required setting, in the MATLAB Command Window, enter:

hdlset_param('myHDLModel', 'SubsystemReuse', 'Atomic and Virtual')

 Code Generation and Verification

5-9

https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/using-mealy-and-moore-machine-types-in-hdl-code-generation.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/using-trigger-signals-and-scalarization-and-test-point-dut-port-generation-parameters.html#buiuh3k-207
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/_mw_eafa42d9-0993-4a14-8e8b-8d2ce8a27f3d.html

Alternatively, you can set this option from the top-level HDL Code Generation pane in the
Configuration Parameters dialog box. Under Global Settings > Coding style, you can change the
Code reuse setting to the required option.

The previous commands set the SubsystemReuse option for your project. To set this option for only
the current code generation session, enter:

makehdl(<DUT system>, 'SubsystemReuse', 'Atomic and Virtual')

R2021a

5-10

Speed and Area Optimizations

Improved delay balancing support for multiple instances of atomic
subsystems
In 2021a, HDL code generation adds support for multiple instances of atomic subsystems that have
different input and output configurations, or have different optimization settings across different
hierarchical paths.

Improved streaming in presence of scalar expanded constants
In R2021a, HDL code generation has improved streaming optimization in the presence of scalar-
expanded constants from Constant blocks. The code generator optimizes the design by reducing the
serialization logic for the constants, which reduces the overall area of the system. This optimization
also increases opportunities to stream logic, if the constants exist at a lower level of the model
hierarchy. The improved streaming works with scalar constants and nonscalar constants that have
identical values.

Enhancement to optimization that removes redundant logic for atomic
subsystems and model references
In R2021a, when your model contains multiple instances of atomic subsystems, model references, or
For Each Subsystem blocks, if these blocks are determined to be active during HDL code generation,
then all ports are preserved in the generated code. Components connected upstream to these ports
are also considered active.

This optimization is enabled by default. To disable it, either clear the Remove Unused Ports check box
in the Configuration Parameters dialog box or set the DeleteUnusedPorts property to off by using
hdlset_param.

hdlset_param(gcs, 'DeleteUnusedPorts', 'off')

See Remove Redundant Logic and Unused Blocks in Generated HDL Code.

Enhancement to sharing optimization for matrix data types
The Serializer and Deserializer blocks now support matrix inputs for HDL code generation. You can
therefore use the resource sharing optimization with matrix types instead of having to use Reshape
blocks to convert between matrix and vector types.

See Resource Sharing Parameters for Subsystems and Floating-Point IPs.

Adaptive pipelining optimization disabled on model by default
By default, the adaptive pipelining optimization is now disabled on a model. If you decide to use this
optimization, you must manually enable it.

In many situations, you can manually insert pipelines in your model and generate efficient HDL code
without enabling the adaptive pipelining optimization. However, for certain design patterns, you must

 Speed and Area Optimizations

5-11

https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/delay-balancing-and-general-optimization-parameters.html#mw_f7b18e22-cd9f-459b-9db9-7a076aa75a2d
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/remove-redundant-logic-in-design.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/resource-sharing-of-multiply-add-and-other-blocks.html

enable adaptive pipelining before generating code. See Design Patterns That Require Adaptive
Pipelining.

Compatibility Considerations
In previous releases, the adaptive pipelining optimization was enabled by default. If you now load a
pre-R2021a model, the optimization is disabled on the model.

If the adaptive pipelining report for your legacy model showed that the code generator inserted
adaptive pipelines in previous releases, manually enable adaptive pipelining when you generate code
for that model in R2021a. See Adaptive Pipelining Report.

To reenable the optimization on the model, either select the Adaptive pipelining check box in the
Configuration Parameters dialog box, or set the AdaptivePipelining property to on by using
hdlset_param.

Generation of target-specific timing databases for critical path
estimation
Use the genhdltdb function to generate timing databases for a specified target device, target device
speed grade, and target tool. To find the critical path in your design, use these custom timing
databases. For more information on critical path estimation, see Critical Path Estimation Without
Running Synthesis.

R2021a

5-12

https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/designs-that-require-adaptive-pipelining-to-meet-timing-requirements.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/designs-that-require-adaptive-pipelining-to-meet-timing-requirements.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/adaptive-pipelining_bve57q1-1.html#bve_vh2-1
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/pipelining-parameters.html#bve2m4r-1
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ref/genhdltdb.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/find-estimated-critical-paths-without-synthesis-tools.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/find-estimated-critical-paths-without-synthesis-tools.html

IP Core Generation and Hardware Deployment

Updates to supported software
HDL Coder has been tested with:

• Xilinx Vivado Design Suite 2020.1
• Intel Quartus Pro 20.2
• Intel Quartus Pro 20.1

See HDL Language Support and Supported Third-Party Tools and Hardware.

Data Type Support for AXI4 Slave: Map bus data types to AXI4 slave
interfaces in IP Core generation
When using the IP Core Generation workflow, in the Target platform interface table, you can
map bus signals at the DUT ports to AXI4 or AXI4-Lite interfaces.

The bus signals workflow includes an IP Core Generation report that displays address offsets of
AXI4 interface-accessible registers generated for each bus element scalar and vector data type in the
Register Address Mapping section. The top-level and sub-level bus data types do not have a
register offset address. The address mapping for scalar and vector bus elements is not contiguous.
For more information, see Custom IP Core Generation.

HDL Workflow Advisor Enhancements
Before generating code, expedite checks on your models by using the optimized HDL Workflow
Advisor checks.

The HDL Workflow Advisor has these enhancements:

• Replaced the Check Global Settings, Check Algebraic Loops, Check Block Compatibility,
and Check Sample Times tasks with the Check Model Settings task. The algebraic loop, block
compatibility, and sample time checks are now optional. You can perform these checks by using
the HDL Code Advisor and additional HDL compatibility checks.

• Merged the Set Basic Options, Set Report Options, Set Advanced Options, Set
Optimization Options, and Set Testbench Options tasks into Set HDL Options.

• Enabled HDL DUT port generation for test points directly from the Set Target Interface task,
which simplifies the mapping of test points to IP core interfaces.

For more information, see HDL Workflow Advisor.

Compatibility Considerations
In R2021a, in the Prepare Model for HDL Code Generation checks in the HDL Workflow Advisor
these tasks have been removed:

• Check Global Settings
• Check Algebraic Loops

 IP Core Generation and Hardware Deployment

5-13

https://www.mathworks.com/help/releases/R2021a/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/custom-ip-core-generation.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/matlab-hdl-coder-workflow-advisor.html

• Check Block Compatibility
• Check Sample Times

In R2021a, in the Set Code Generation Options tasks in the HDL Workflow Advisor these tasks
have been removed:

• Set Basic Options
• Set Report Options
• Set Advanced Options
• Set Optimization Options
• Set Testbench Options

FPGA Data Capture in HDL Workflow Advisor supports sequential
trigger
When you use FPGA Data Capture in HDL Workflow Advisor, you can now provide a sequence of
trigger conditions at multiple stages to read data from an FPGA. To enable this feature, specify the
maximum number of trigger stages as a value greater than 1 for the FPGA Data Capture maximum
sequence depth parameter in step 3.2 Generate RTL Code and IP Core of HDL Workflow Advisor.
For more information on capturing data, see Data Capture Workflow (HDL Verifier).

To use this feature, you must install the HDL Verifier Support Package for Xilinx or Intel FPGA
boards. To access supported hardware for the HDL Verifier product, see HDL Verifier Supported
Hardware (HDL Verifier).

FPGA Data Capture integration with IP Core Generation workflow for
generic Xilinx and generic Intel targets
The generic Xilinx platform and the generic Intel platform now support FPGA Data Capture in the IP
Core Generation workflow of HDL Workflow Advisor. For more information on the IP Core Generation
workflow, see IP Core Generation.

To use this feature, you must install the HDL Verifier Support Package for Xilinx or Intel FPGA
boards. To access supported hardware for the HDL Verifier product, see HDL Verifier Supported
Hardware (HDL Verifier).

Multirate IP Core Generation: Support AXI4-Stream interface on
slower-rate DUT ports
HDL Coder now supports the IP Core generation workflow for designs that map the AXI4-Stream
interface to ports that have slower rates than other DUT ports. You can now design fully functional
multirate designs for AXI4-Stream interfaces. Your design now supports these options:

• DUT ports running at a rate faster than AXI4-Stream interface ports.
• Resource sharing where the model runs at a single rate and optimizations introduce a faster rate.
• Clock rate pipelining at a rate faster than the design rate.
• AXI4-Stream master and slave channels run at different rates. All AXI4-Stream master ports must

be at the same rate. All AXI4-Stream slave ports must be at the same rate.

R2021a

5-14

https://www.mathworks.com/help/releases/R2021a/hdlverifier/ug/data-capture-workflow.html
https://www.mathworks.com/help/releases/R2021a/hdlverifier/supported-hardware.html
https://www.mathworks.com/help/releases/R2021a/hdlverifier/supported-hardware.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/overview-of-workflows-in-hdl-workflow-advisor.html#mw_268bc567-2cb2-4d0d-b508-c136ac2bf99e
https://www.mathworks.com/help/releases/R2021a/hdlverifier/supported-hardware.html
https://www.mathworks.com/help/releases/R2021a/hdlverifier/supported-hardware.html

For more information, see Multirate IP Core Generation.

Complex data type on AXI4-Stream data port
In R2021a, you can now map complex data types as input signals to the AXI4-Stream interface.

High Bandwidth AXI Stream: Generate IP cores that have bit-widths
greater than 128 bits on AXI4-Stream data ports
You can now generate an HDL IP Core that has a greater bit-width than 128-bit data on AXI4-Stream
interfaces.

Simulink supports fixed-point data types that have word lengths of up to 128 bits. To model your data
ports that have word lengths greater than 128 bits, use vector data types. For example, to model a
512-bit data port, use a vector port that has four 128-bit elements. The vector elements are packed
into a 512-bit AXI4-Stream data port on the HDL IP core interface.

Generation of HDL IP cores that have greater than 128 bits on
external IO interfaces and external ports
When you create your own custom board design that has external IO interfaces and external ports by
using the addExternalIOInterface and addExternalPortInterface methods of the hdlcoder.Board class,
you can now map DUT ports that have flattened word lengths greater than 128 bits to external IO
interfaces and external ports. You can then connect the HDL IP core more easily to other IPs in the
reference design that have word lengths greater than 128 bits.

Simulink supports fixed-point data types that have word length of up to 128 bits. To model your data
ports that have word lengths greater than 128 bits, use vector data types. For example, to model a
512-bit data port, use a vector port that has four 128-bit elements. The vector elements are packed
into a 512-bit AXI4-Stream data port on the HDL IP core interface.

Interface option to customize initial value of AXI4 Master and AXI4
Stream registers
When you run the IP Core Generation workflow and map the DUT ports to AXI4 Master and AXI4-
Stream master interfaces, you can customize the initial value of the default read and write base
addresses for the AXI4 Master and default frame length for the AXI4-Stream master.

In the Set Target Interface task, when you map the DUT port to AXI4 Master interfaces, click the
Options button that appears on the Interface Options column of the target platform interface table.
Specify the DefaultReadBaseAddress or DefaultWriteBaseAddress. If you have already specified
the default base read and write addresses in the reference design file you cannot specify the
addresses in the interface option.

In the Set Target Interface task, when you map the DUT port to AXI4-Stream master interfaces,
click the Options button that appears on the Interface Options column of the target platform
interface table. Specify the DefaultFrameLength. If you have already mapped the TLAST signal for
the AXI4-Stream master the DefaultFrameLength option is disabled.

This setting is saved on the DUT port in the model as the HDL block property IOInterfaceOptions.
For example, if you map a DUT input port to AXI4-Stream interface, set DefaultFrameLength to

 IP Core Generation and Hardware Deployment

5-15

https://www.mathworks.com/help/releases/R2021a/hdlcoder/ug/multirate-ip-core-generation.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ref/hdlcoder.board.addexternaliointerface.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ref/hdlcoder.board.addexternalportinterface.html
https://www.mathworks.com/help/releases/R2021a/hdlcoder/ref/hdlcoder.board-class.html

512, and then generate the IP core. The IOInterfaceOptions property of that input port is saved
with the value {'DefaultFrameLength','512'}.

See Initial Value of AXI4 Slave Registers.

R2021a

5-16

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/model-design-for-axi4-slave-interface-generation.html#mw_da70e9be-c961-4884-8385-e45f878c6a30

Simscape Hardware-in-the-Loop Workflow

Partitioning solver: Use partitioning solver to generate HDL code from
nonlinear models
When you use nonlinear Simscape models, you can now use the partitioning solver to generate the
HDL implementation model and then generate HDL code and deploy the code to Speedgoat Simulink-
Programmable I/O modules.

The partitioning solver converts the entire system of equations for the Simscape network into several
smaller sets of switched linear equations that are connected through nonlinear functions. By using
this solver, you can run the Simscape HDL Workflow Advisor without having to remove nonlinear
blocks in your model or replacing them with the corresponding Simulink blocks.

To use the partitioning solver, on the Solver Configuration (Simscape) block, set the Solver type
block parameter to partitioning and then run the Simscape HDL Workflow Advisor.

Optimal value of oversampling factor automatically set on HDL
implementation model
Previously, when you ran the Simscape HDL Workflow Advisor, the Oversampling factor was set to
60 on the HDL implementation model. When you used this value to generate HDL code from the
model, delay balancing was sometimes unsuccessful, and you had to increase this value to
accommodate the latency introduced by the floating-point operations. In some cases, to run your
design at the maximum achievable target frequency on the target design, you had to further adjust
the oversampling factor.

Starting in R2021a, the Simscape HDL Workflow automatically sets an optimal value for the
Oversampling factor. You can then generate HDL code from the model and run your design at the
maximum achievable target frequency with minimal or no modifications to this value.

 Simscape Hardware-in-the-Loop Workflow

5-17

https://www.mathworks.com/help/releases/R2021a/physmod/simscape/ref/solverconfiguration.html

R2020b

Version: 3.17

New Features

Bug Fixes

Compatibility Considerations

6

Model and Architecture Design

Half-Precision Native Floating Point: Generate target-independent
synthesizable RTL code from half-precision floating-point models
In R2020b, if you have half-precision data types in your Simulink model, you can use HDL Coder
native floating-point support to generate target-independent HDL code. You can deploy the generated
code on any generic ASIC or FPGA platform. For applications that require smaller dynamic range, you
can use half types without having to convert your design to use fixed-point types. Using half types
consumes much less memory, has lower latency, and saves FPGA resources. See Getting Started with
HDL Coder Native Floating-Point Support.

HDL Coder supports basic math operators and various kinds of Delay blocks that have half types for
HDL code generation. See Simulink Blocks Supported with Native Floating-Point and Latency Values
of Floating Point Operators.

For an example, see Floating Point Support: Field-Oriented Control Algorithm.

HDL code generation for lookup tables that have floating-point types
Previously, for the 1-D Lookup Table, 2-D Lookup Table, and n-D Lookup Table blocks, you could use
floating-point types for the table data and output.

In R2020b, you can also use floating-point types for the inputs and breakpoints, and generate HDL
code for the blocks in Native Floating Point mode. Floating-point support for the blocks is
limited to single and double data types for HDL code generation. Breakpoints specification
parameter supports Evenly spaced and Explicitly specified.

To learn about HDL block properties you can specify for the blocks, see HDL Code Generation
(Simulink).

HDL Code Advisor check for blocks that introduce latency with fixed-
point types
Previously, the HDL Code Advisor check Check for blocks with nonzero output latency identified
blocks that had nonzero output latency with floating-point signals in Native Floating Point
mode.

In R2020b, the check is moved to the Check for blocks and block settings folder. When you run
the check, it identifies blocks that introduce latency in the generated HDL code with both fixed-point
and floating-point types. You can then add the appropriate number of delays adjacent to the blocks in
the original model, and therefore simulate the model with latency. The code generator absorbs those
delays and does not introduce additional latency in the generated HDL code.

See Check for blocks that have nonzero output latency.

Automatically package protected models with their dependencies
When you create a protected model, you can now automatically package it with its dependencies and
a harness model in a project archive. When the recipient extracts the contents of the project archive

R2020b

6-2

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/native-floating-point-support.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/native-floating-point-support.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/minimum-and-maximum-latency-of-floating-point-operators.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/minimum-and-maximum-latency-of-floating-point-operators.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/single-precision-field-oriented-control-pmsm-model.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/1dlookuptable.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/2dlookuptable.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/ndlookuptable.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/ndlookuptable.html#f7-940367_hdl
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/check-for-blocks-with-nonzero-output-latency.html

and opens the harness model, they should be able to simulate the protected model without needing to
define missing variables or objects. Before sharing the project archive, check whether the project
contains all of the necessary supporting files, and update the harness model as needed.

In the Create Protected Model dialog box, set Contents to Protected model (.slxp) and
dependencies in a project. For Name of project archive (.mlproj), use the default name or
specify a name. The project inside the project archive uses the same name.

Alternatively, use the Simulink.ModelReference.protect function with the comma-separated
pair consisting of 'Project' and true. To specify a project name, also use the comma-separated
pair consisting of 'ProjectName' and the desired name specified as a character vector. If you do not
specify a project name, the function uses the default name.

For more information, see Package and Share Protected Models.

 Model and Architecture Design

6-3

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/simulink.modelreference.protect.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/protected-model-included-files.html

Block Enhancements

Optimized Square Root: Generate high-frequency fixed-point HDL
implementation of square root operations
When you use the SqrtFunction architecture of the Sqrt block with fixed-point data types, you can
now use the LatencyStrategy and CustomLatency settings in the HDL Block Properties dialog box
to specify whether to use zero, maximum, or a custom latency value between zero and maximum
value. You can use the custom latency implementation to choose from a range of frequency values.

Depending on the UseMultiplier and LatencyStrategy settings, you can use a pipelined
multiplication algorithm or a shift and add algorithm to compute the square root. See Implement
Control Signals Based Mathematical Functions Using HDL Coder.

Compatibility Considerations
The SqrtBitSet architecture of the Sqrt block is no longer available in R2020b. If you load a pre-
R2020b model that you saved with SqrtBitSet as the architecture, the HDL architecture is now
saved as SqrtFunction. For fixed-point types, the SqrtFunction architecture implements the
same functionality as the SqrtBitSet algorithm.

Custom latency for math and trigonometric blocks with fixed-point
types
You can now specify a custom latency value for these blocks with fixed-point types and generate HDL
code. In the HDL Block Properties dialog box for these blocks, you can use the LatencyStrategy and
CustomLatency settings to specify whether to use zero, maximum, or a custom latency value
between zero and maximum value. You can use the custom latency implementation to choose from a
range of frequency values when targeting the generated code onto an FPGA device.

• Divide and Reciprocal blocks that have ShiftAdd as the HDL architecture.
• Sqrt block that has SqrtFunction as the HDL architecture. See “Optimized Square Root:

Generate high-frequency fixed-point HDL implementation of square root operations” on page 6-4.
• Trigonometric Function block that has Function set to sin, cos, sincos, cos+jsin, or atan2

and Approximation method as CORDIC.

See Implement Control Signals Based Mathematical Functions Using HDL Coder.

Compatibility Considerations
Starting in R2020b, in the HDL Block Properties dialog box, the HDL architecture has been renamed
from SinCosCordic to Cordic. The UsePipelinedKernel setting is no longer available in the HDL
Block Properties dialog box. If you load a pre-R2020b model with the UsePipelinedKernel property
saved on the model, you can access the property value by using hdlget_param.

Modulo option for HDL Counter block
In the Block Parameters dialog box of the HDL Counter block, you can select a Modulo option for the
Counter type parameter. In this mode, depending on the count direction, the counter counts up or

R2020b

6-4

https://www.mathworks.com/help/releases/R2020b/simulink/slref/sqrt.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/implement-control-signals-based-functions-using-hdl-coder.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/implement-control-signals-based-functions-using-hdl-coder.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/sqrt.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/divide.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/mathfunction.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/sqrt.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/trigonometricfunction.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/implement-control-signals-based-functions-using-hdl-coder.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/hdlcounter.html

down from the count from value to the count to value, and then wraps back to a value that is
determined by a wrapping step value.

This mode of the HDL Counter differs from the Count limited because the count value does not
exceed the count to value. To learn more, see Count Limited and Modulo Operation Modes.

HDL code generation for Scoped tag visibility for Goto block
In R2020b, you can generate HDL code for the Goto block that has the Tag visibility block
parameter specified as Scoped. See Required HDL Settings for Goto and From Blocks.

Product block enhancements for HDL code generation
You can now specify /* for Number of inputs block parameter and generate HDL code for the
Product block with both fixed point and floating point types. In this mode, the second input is divided
by the first input to calculate the result.

5G NR HDL MIB Recovery Reference Application: Implement 5G NR
MIB recovery subsystem on FPGA or ASIC
The NR HDL MIB Recovery (Wireless HDL Toolbox) reference application in Wireless HDL Toolbox™
builds on the NR HDL Cell Search (Wireless HDL Toolbox) reference application by decoding the
broadcast channel and recovering the master information block (MIB). This design supports HDL
code generation with HDL Coder and is ready for deployment to hardware.

OFDM Transmitter and Receiver Reference Applications: Implement
custom OFDM wireless communication system on FPGA or ASIC
The HDL OFDM Transmitter (Wireless HDL Toolbox) and HDL OFDM Receiver (Wireless HDL
Toolbox) reference applications in Wireless HDL Toolbox implement an orthogonal frequency-division
multiplexing (OFDM) based wireless communication system designed using Simulink blocks. The
design supports HDL code generation with HDL Coder and is ready for deployment to hardware.

The HDL OFDM MATLAB References (Wireless HDL Toolbox) shows how to model a wireless
communication hardware algorithm in MATLAB as a step toward developing a Simulink HDL-friendly
model. Use this MATLAB reference to verify the Simulink reference application model.

HDL-optimized FIR Decimation block and System object: Downsample
signals using a FIR decimation filter with a hardware-friendly
interface and architecture
The FIR Decimation HDL Optimized block in DSP System Toolbox™ downsamples signals using a
transposed or systolic filter architecture. The block provides an efficient hardware implementation
and uses hardware-friendly control signals.

This algorithm is also available with the dsp.HDLFIRDecimation System object in DSP System
Toolbox.

 Block Enhancements

6-5

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/hdlcounter.html#mw_a9dd26b9-9c1d-476c-b525-fb2e7d530f1f_head
https://www.mathworks.com/help/releases/R2020b/simulink/slref/goto.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/appropriate-usage-of-delay-blocks-as-registers.html#mw_f4cd43eb-dea6-4782-ac17-c97cf8147d65
https://www.mathworks.com/help/releases/R2020b/simulink/slref/product.html
https://www.mathworks.com/help/releases/R2020b/wireless-hdl/ug/nr-hdl-mib-recovery.html
https://www.mathworks.com/help/releases/R2020b/wireless-hdl/ug/nr-hdl-cell-search.html
https://www.mathworks.com/help/releases/R2020b/wireless-hdl/ug/hdlofdmtransmitter.html
https://www.mathworks.com/help/releases/R2020b/wireless-hdl/ug/hdlofdmreceiver.html
https://www.mathworks.com/help/releases/R2020b/wireless-hdl/ug/hdlofdmmatlabreferences.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/firdecimationhdloptimized.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.hdlfirdecimation-system-object.html

Gigasample-per-second (GSPS) CIC Decimation HDL-Optimized Block:
Increase throughput of CIC decimation by using frame-based input
You can now generate frame-based waveforms from the CIC Decimation HDL Optimized block in DSP
System Toolbox. The block accepts and returns a column vector of elements that represent samples in
time. The input vector can contain up to 64 samples. When you use frame-based input, you must use a
fixed decimation factor.

This capability increases throughput in hardware designs. For a list of all blocks that support frame-
based input and output for HDL code generation, see High Throughput HDL Algorithms (DSP System
Toolbox).

This feature is also available with the dsp.HDLCICDecimation System object in DSP System
Toolbox.

Corner Detector Block and System Object: Detect features using
Harris algorithm
The Corner Detector block in Vision HDL Toolbox now provides a choice between the FAST algorithm
and the Harris and Stephens interconnecting edges algorithm.

Region of Interest (ROI) Resource Sharing: Share hardware resources
and streaming control signals between vertically aligned regions
The ROI Selector block in Vision HDL Toolbox provides an option to share hardware resources when
selecting vertically aligned regions. Regions in the same column share the same pixelcontrol bus
output.

Select the Reuse output ports for vertically aligned regions checkbox, and provide a set of
regions that are aligned in columns and do not overlap vertically within each column. You can specify
up to 1024 regions per column. To divide a frame into tiled regions that are compatible with vertical
reuse, use the visionhdlframetoregions function.

Blob Analysis Example: Detect and label connected components in
streaming video
The Blob Analysis (Vision HDL Toolbox) example in Vision HDL Toolbox shows how to implement a
single-pass 8-way connected component labeling algorithm, and perform blob analysis to give the
centroid, bounding box, and area of each blob. The model supports up to 1080p@60fps video.

HDL Minimum Resource FFT and HDL Streaming FFT blocks have been
removed
The HDL Minimum Resource FFT and HDL Streaming FFT blocks have been removed. Use the FFT
HDL Optimized block instead.

• When replacing the HDL Minimum Resource FFT block, set the Architecture parameter of the
FFT HDL Optimized block to Burst Radix 2.

• When replacing the HDL Streaming FFT block, set the Architecture parameter of the FFT HDL
Optimized block to Streaming Radix 2^2.

R2020b

6-6

https://www.mathworks.com/help/releases/R2020b/dsp/ref/cicdecimationhdloptimized.html
https://www.mathworks.com/help/releases/R2020b/dsp/ug/high-throughput-hdl-algorithms.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.hdlcicdecimation-system-object.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ref/cornerdetector.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ref/roiselector.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ref/visionhdlframetoregions.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ug/blob-analysis.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/ffthdloptimized.html

For more information, see Implement FFT for FPGA Using FFT HDL Optimized Block (DSP System
Toolbox).

 Block Enhancements

6-7

https://www.mathworks.com/help/releases/R2020b/dsp/ug/generate-hdl-code-for-fft-hdl-optimized-block.html

Code Generation and Verification

Option to scalarize vector ports only at DUT level in VHDL code
Starting in R2020b, when you generate VHDL code, you can specify whether to flatten the vector
ports into a set of scalar ports only at the DUT level instead of the entire model. This optimization
speeds up code generation especially for large models that have many vector inputs.

This setting has been renamed as Scalarize ports. You can specify this setting when generating HDL
code for the MATLAB to HDL workflow and for your Simulink model by using Scalarize ports
parameter. See Scalarization of Vector Ports in Generated VHDL Code

See also “IP core generation workflow for scalarization of vector ports only at DUT level in VHDL
code” on page 6-12.

HDL code generation for models that have comment through blocks
You can now generate HDL code for models containing blocks that are comment through. When you
right-click a block and select Comment Through, the block is excluded from simulation and HDL
code generation. The signals are passed through from the input of the block to the output. Use this
capability for debugging your model and for identifying blocks that are not supported for HDL code
generation.

See Terminate Unconnected Block Outputs and Usage of Commenting Blocks.

HDL code generation for models that have Subsystem Reference
blocks
You can now generate HDL code for models containing Subsystem Reference blocks. By using
Subsystem Reference blocks, you can save the contents of a subsystem in a separate SLX file and
reuse it multiple times. To convert a Subsystem block to a Subsystem Reference, select that
Subsystem, and in the Simulink Toolstrip, on the Subsystem Block tab, select Convert > Convert
to Referenced Subsystem. See Subsystem Reference (Simulink).

By default, HDL Coder generates separate HDL files for referenced subsystems. To generate a single
HDL file, convert the Subsystem Reference block to an atomic subsystem and set
DefaultParameterBehavior property as Inlined.

Enhancement to HDL code generation for nontop DUT
In R2020b, when you generate HDL code for a nontop DUT subsystem or a DUT that is not at the top
level of the model, the code generator does not covert the subsystem to a model reference. You can
generate HDL code for the nontop DUT without restrictions that previously applied when converting
to a model reference.

For example, you can now use masked subsystems where the mask parameter values are initialized
as the nontop DUT. You can also use Bus Element ports inside the nontop DUT, and then generate
HDL code.

R2020b

6-8

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/using-trigger-signals-and-scalarization-and-test-point-dut-port-generation-parameters.html#buiuh3k-207
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/_mw_eafa42d9-0993-4a14-8e8b-8d2ce8a27f3d.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/guidelines-for-terminating-and-commenting-out-blocks.html
https://www.mathworks.com/help/releases/R2020b/simulink/ug/referenced-subsystem-1.html

HDL code generation for nonboolean inputs at control ports
Previously, to generate HDL code for blocks that have control ports such as a Delay block with an
external enable port, you used boolean or ufix1 types as inputs to the ports. Starting in R2020b, in
addition to boolean and ufix1, you can use other data types for the control ports of these blocks
and generate HDL code:

• Delay block with an external reset or enable port. That is, Enabled Delay, Resettable Delay, and
Enabled Resettable Delay blocks.

• Unit Delay Enabled Synchronous, Unit Delay Resettable Synchronous, and Unit Delay Enabled
Resettable Synchronous blocks.

• Triggered Subsystem, Enabled Subsystem, Enabled Synchronous Subsystem, and Resettable
Synchronous Subsystem blocks.

HDL code generation for absolute time temporal logic in Stateflow
Starting in R2020b, you can use absolute-time temporal logic in Stateflow charts for HDL code
generation. Support of absolute-time temporal logic is limited to charts that execute with a fixed time
period, and does not include charts that are conditionally executed or triggered. Time periods for
absolute-time temporal logic operators are defined based on the simulation time of the chart in your
Simulink model. For more information, see Control Chart Execution by Using Temporal Logic
(Stateflow).

Default HDL simulation command vsim -novopt has changed to vsim -
voptargs=+acc
The default value of the HDLSimCmd property is now '-voptargs=+acc %s.%s\n'. See Simulation
command.

Compatibility Considerations
Prior to R2020b, the default HDL simulation command was vsim -novopt %s.%s\n. Mentor
Graphics® ModelSim versions prior to 10.7 support the former syntax. If you use a more recent
ModelSim version, you must use the -voptargs=+acc syntax.

UseMatrixTypesInHDL property not recommended
The UseMatrixTypesinHDL HDL block property on the MATLAB Function block and Stateflow Chart
is not recommended for use. In R2020b, this property no longer appears in the HDL Block Properties
dialog box for these blocks. The UseMatrixTypesinHDL property does not affect the HDL code
generation behavior.

Compatibility Considerations
If you now load a pre-R2020b model that has the UseMatrixTypesinHDL property saved on the
model, you can still access this property from the command line by using hdlget_param.

 Code Generation and Verification

6-9

https://www.mathworks.com/help/releases/R2020b/simulink/slref/delay.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/unitdelayenabledsynchronous.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/unitdelayresettablesynchronous.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/unitdelayenabledresettablesynchronous.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/unitdelayenabledresettablesynchronous.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/triggeredsubsystem.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/enabledsubsystem.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/enabledsynchronoussubsystem.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/resettablesynchronoussubsystem.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/resettablesynchronoussubsystem.html
https://www.mathworks.com/help/releases/R2020b/stateflow/ug/using-temporal-logic-in-state-actions-and-transitions.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/simulation-script.html#buiuh3l-374
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/simulation-script.html#buiuh3l-374
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/hdlget_param.html

Speed and Area Optimizations

Option to control removal of unused ports in generated HDL code
In R2020b, when you generate HDL code, you can specify whether to remove unused ports in the
model that are not at the top level.

This optimization is enabled by default. To disable it, either clear the Remove Unused Ports check box
in the Configuration Parameters dialog box or set the DeleteUnusedPorts property to off by using
hdlset_param.

hdlset_param(gcs, 'DeleteUnusedPorts', 'off')

See Remove Redundant Logic and Unused Blocks in Generated HDL Code.

Hierarchy flattening report
When you select the Generate optimization report check box and set the HDL block property
FlattenHierarchy to on for a subsystem in your model, HDL Coder now generates a hierarchy
flattening report. The report displays subsystems in your model that have FlattenHierarchy set to
on and off, hierarchy flattening status, and the HDL files that are inlined.

See Hierarchy Flattening Report.

Optimization enhancements for Sum of Elements and MinMax blocks
In R2020b, when you enable FlattenHierarchy for the MinMax block, it generates a single HDL file.
In addition, you can now use various optimizations for the Sum of Elements and Product of Elements
blocks that use Linear architecture because the blocks are expanded into multiple, simpler blocks
during code generation.

R2020b

6-10

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/delay-balancing-and-general-optimization-parameters.html#mw_f7b18e22-cd9f-459b-9db9-7a076aa75a2d
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/remove-redundant-logic-in-design.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/hierararchy-flattening.html#mw_0b9aced1-61a1-403f-937c-cbcfdb30ff58
https://www.mathworks.com/help/releases/R2020b/simulink/slref/minmax.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/add.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/productofelements.html

IP Core Generation and Hardware Deployment

Rapid prototyping of HDL IP core by using software interface script
When you run the IP Core Generation workflow for your Simulink model, you can now rapidly
prototype the HDL IP core by using a generated MATLAB software interface script.

In R2020b, the Generate software interface model task has been renamed as Generate software
interface task. To generate the script, on the Generate software interface task, select the
Generate MATLAB software interface script check box, and then run this task. You can also
generate a software interface script by running the HDL Workflow at the command line by using
RunTaskGenerateSoftwareInterface, and properties GenerateSoftwareInterfaceModel
and GenerateSoftwareInterfaceScipt.

For standalone FPGA boards that do not have an embedded ARM processor, the Generate software
interface model task was not available in the HDL Workflow Advisor. In R2020b, when you enable
the reference design parameter Insert JTAG MATLAB as AXI Master (requires HDL Verifier
license), you can still generate a software interface script to prototype the generated HDL IP core.
The script uses the MATLAB AXI Master to control the AXI4 slave registers.

Compatibility Considerations
In R2020b, you can import and run an HDL Workflow script that used the
RunTaskGenerateSoftwareInterfaceModel setting. If
RunTaskGenerateSoftwareInterfaceModel was saved as true, then
RunTaskGenerateSoftwareInterface, and properties GenerateSoftwareInterfaceModel
and GenerateSoftwareInterfaceScipt are set to true. If
RunTaskGenerateSoftwareInterfaceModel was saved as false, then
RunTaskGenerateSoftwareInterface and GenerateSoftwareInterfaceModel are set to
false, and the task is skipped.

See Generate Software Interface to Probe and Rapidly Prototype the HDL IP Core and Create
Software Interface Script to Control and Rapidly Prototype HDL IP Core.

Interface option to customize initial value of AXI4 slave registers
In R2020b, when you run the IP Core Generation workflow and map the DUT ports to AXI4 slave
interfaces, you can customize the initial value for the AXI4 slave registers.

In the Set Target Interface task, when you map the DUT port to AXI4 slave interfaces, click the
Options button that appears on a new Interface Options column of the target platform interface
table, and then specify the RegisterInitialValue. When you run the workflow to the Generate RTL
Code and IP Core task, the IP core report displays the RegisterInitialValue that you specified.

This setting is saved on the DUT port in the model as the HDL block property IOInterfaceOptions.
For example, if you map a DUT input port to AXI4-Lite interface, set RegisterInitialValue to 5, and
then generate the IP core, the IOInterfaceOptions property of that input port is saved with the
value {'RegisterInitialValue','5'}.

See Initial Value of AXI4 Slave Registers.

 IP Core Generation and Hardware Deployment

6-11

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/generate-software-interface-to-probe-and-rapidly-prototype-the-generated-hdl-ip-core.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/create-fpga-object-and-customize-drivers-to-control-hdl-ip-core.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/create-fpga-object-and-customize-drivers-to-control-hdl-ip-core.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/model-design-for-axi4-slave-interface-generation.html#mw_da70e9be-c961-4884-8385-e45f878c6a30

Generation of HDL IP cores that have greater than 128 bits on internal
IO interface
When you create your own custom reference design that has internal IO interfaces by using the
addInternalIOInterface method of the hdlcoder.ReferenceDesign class, you can now map
DUT ports that have flattened word lengths greater than 128 bits to internal IO interfaces. You can
then connect the HDL IP core more easily with other IPs in the reference design that have word
lengths greater than 128 bits.

Simulink supports fixed-point data types that have word length of up to 128 bits. To model your DUT
ports that have word lengths greater than 128 bits, use vector data types. For example, to model a
512-bit Data port, use a vector port with four 128-bit scalar ports. You can then map these DUT Data
ports to internal input and output interfaces in the Target platform interface table, generate the HDL
IP core, and integrate the IP core into your Vivado or Qsys reference designs.

IP core generation workflow for scalarization of vector ports only at
DUT level in VHDL code
When you run the IP Core Generation workflow with VHDL as the Language, to speed up code
generation for models with vector ports, you can now flatten the vector ports into a set of scalar ports
only at the external interface of the DUT instead of the entire model.

For your Simulink model, in the HDL Workflow Advisor, on the HDL Code Generation > Set Code
Generation Options > Set Advanced Options > Ports tab, set Scalarize ports to DUT level. To
learn how to specify this setting for your MATLAB algorithm, see “Option to scalarize vector ports
only at DUT level in VHDL code” on page 6-8 and Scalarization of Vector Ports in Generated VHDL
Code.

Compatibility Considerations
If you now load a pre-R2020b model that had Scalarize ports set to on, when you run the Generate
RTL Code and IP Core task, the Advisor generates a warning that indicates using DUT level
setting for faster code generation.

Intel Quartus Pro SoC Targeting: Generate generic HDL IP core or
integrate IP core into Intel reference designs
You can now specify Intel Quartus Pro as the Synthesis tool, and then select IP Core
Generation as the Target workflow to generate a generic HDL IP core for the Intel platform or
integrate the IP core into Intel Quartus Pro reference designs.

Before you specify the Synthesis tool, set up the tool path by using the hdlsetuptoolpath
function. HDL Coder supports these family of devices for Intel Quartus Pro:

• Arria 10
• Cyclone 10 GX
• Stratix 10

See also HDL Language Support and Supported Third-Party Tools and Hardware.

R2020b

6-12

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/hdlcoder.referencedesign.addinternaliointerface.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/using-trigger-signals-and-scalarization-and-test-point-dut-port-generation-parameters.html#buiuh3k-207
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/_mw_eafa42d9-0993-4a14-8e8b-8d2ce8a27f3d.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/_mw_eafa42d9-0993-4a14-8e8b-8d2ce8a27f3d.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/hdlsetuptoolpath.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/gs/language-and-tool-version-support.html

Arria 10 SoC AXI4 Slave reference design
In R2020b, you can target reference designs that are based on the Arria® 10 SoC board when you
specify Altera Quartus-II or Intel Quartus Pro as the Synthesis tool. Depending on the Synthesis
tool, you can select Altera Arria 10 SoC development kit or the Intel Arria 10 SoC
development kit as the Target platform, and then target the Default system or the Default
system with External DDR4 Memory Access reference designs.

To use the Early I/O release capability on the Arria 10 SoC, you can split the bitstream into core and
peripheral RBF files. To generate a split bitstream, make sure that the new reference design
parameter GenerateSplitBistream of the hdlcoder.ReferenceDesign class is set to true.

See Getting Started with Targeting Intel Quartus Pro based Devices.

Speedgoat I/O Modules IO331 and IO333 being removed
Speedgoat I/O modules Speedgoat IO331, its variant Speedgoat IO331-6, and Speedgoat
IO333 that you used with the Simulink Real-Time FPGA I/O workflow are no longer supported
in R2020b.

Compatibility Considerations
In R2020b, if you load a pre-R2020b model that was saved by using the target platform Speedgoat
IO331, Speedgoat IO331-6, or Speedgoat IO333, and then open the HDL Workflow Advisor,
HDL Coder generates a warning. Before you run the Simulink Real-Time FPGA I/O workflow,
install the Speedgoat I/O Blockset and the Speedgoat HDL Coder Integration Packages.

See also Speedgoat - HDL Coder Integration Packages, Speedgoat FPGA Support with HDL Workflow
Advisor, and Xilinx HDL Support with Speedgoat IO Modules.

Audio filter reference application for Intel SoC device
HDL Coder provides two examples in R2020b that target the Intel SoC device.

• Authoring a Reference Design for Audio System on Intel board shows how to author an audio
reference design on an Intel SoC device.

• Running an Audio Filter on Live Audio Input using Intel Board extends the audio filter algorithm in
Running an Audio Filter on Live Audio Input Using a Zynq Board to target the Intel Arrow® SoC
development kit.

Updates to supported software
HDL Coder has been tested with:

• Xilinx Vivado Design Suite 2019.2
• Intel Quartus Pro 19.4
• Microsemi Libero SoC 12.0

See HDL Language Support and Supported Third-Party Tools and Hardware.

 IP Core Generation and Hardware Deployment

6-13

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/getting-started-with-hardware-software-codesign-workflow-for-quartus-pro-devices.html
https://www.speedgoat.com/help/hdlcoder/page/index
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/fpga-support.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/fpga-support.html
https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/authoring-a-reference-design-for-audio-system-on-an-intel-board.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/running-an-audio-filter-on-live-audio-input-using-an-intel-board.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/running-an-audio-filter-on-live-audio-input-using-a-zynq-board.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/gs/language-and-tool-version-support.html

Simscape Hardware-in-the-Loop Workflow

Automatic replacement of Simscape subsystem with state-space
implementation
In R2020b, the Simscape HDL Workflow Advisor automatically replaces the Simscape subsystem with
the state-space implementation in the HDL implementation model. You do not have to modify the HDL
implementation model, and can directly generate HDL code for the model and then deploy the code
onto Speedgoat FPGA I/O modules.

In addition, when you select the Generate validation logic for the implementation model check
box, the Advisor generates the HDL implementation model and a state-space validation model.

See Modeling Guidelines for Simscape Subsystem Replacement.

Automatic setting of number of solver iterations in Simscape HDL
Workflow Advisor
Previously, when you ran the Simscape HDL Workflow Advisor, in the Generate implementation
model task, the Number of solver iterations was specified as 5 for switched linear models. When
you generated the HDL implementation model, in some cases, you had to iterate multiple times to get
the optimal number of solver iterations.

In R2020b, depending on your Simscape model, the Advisor automatically determines an optimal
number of solver iterations that causes the model simulation to converge and avoids exceeding the
threshold value for real-time deployment.

See Using Number of Solver Iterations.

Mapping of state-space parameters to RAM in HDL implementation
model
For large Simscape models, the generated HDL implementation model can have large state-space
parameters. These state-space parameter matrices consumed a large number of FPGA lookup table
resources on the FPGA, and might cause the design to not fit on the target FPGA device.

To save lookup table resources, you can now map the state-space parameter matrices to Block RAM
resources on the FPGA. In the Generate implementation model task, the Map state space
parameters to RAMs setting is specified as Auto, which maps state-space parameters to RAMs.

See Generate Optimized HDL Implementation Model from Simscape.

Duplicate configurations removed in generated HDL implementation
model
Starting in R2020b, the Simscape HDL Workflow Advisor removes duplicate configurations when
computing the state-space equations. Duplicate configurations are configurations that have the same
state-space matrices. The duplicate configuration removal saves area on the target FPGA device
because it reduces the number of state-space coefficients that has to be stored on the FPGA.

R2020b

6-14

https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/simscape-to-hdl-modeling-best-practices.html
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/simscape-hdl-workflow-advisor-tips-and-guidelines.html#mw_a5a115a7-23d5-43dd-bbfc-fd0178e7a0ce
https://www.mathworks.com/help/releases/R2020b/hdlcoder/ug/optimize-hdl-implementation-model-from-simscape.html

For example, the Swiss rectifier example model, sschdlexSwissRectifierExample, previously
reported 113 configurations. 23 of these configurations are duplicate, which is now removed when
extracting the state-space equations, resulting in lower resource consumption on the FPGA.

 Simscape Hardware-in-the-Loop Workflow

6-15

R2020a

Version: 3.16

New Features

Bug Fixes

Compatibility Considerations

7

Model and Architecture Design

Additional HDL modeling guidelines added to documentation
In R2020a, these HDL modeling guidelines have been added to the documentation.

• Guidelines for Using Delays and Goto and From Blocks for HDL Code Generation
• Modeling Efficient Multiplication and Division Operations for FPGA Targeting
• Using Persistent Variables and fi Objects Inside MATLAB Function Blocks for HDL Code

Generation
• Guidelines for HDL Code Generation Using Stateflow Charts

See Guidelines for Supported Blocks and Data Type Settings.

Functionality being removed or changed
Starting in R2020a, the HDL Model Checker is being renamed to HDL Code Advisor. This is a name
change only. To open the HDL Code Advisor, you now use the hdlcodeadvisor function. The
functionality remains the same and the original function name, hdlmodelchecker, will continue to
work.

See Getting Started with the HDL Code Advisor.

Compatibility Considerations
Although the function hdlmodelchecker will continue to work, if your code uses
hdlmodelchecker, consider updating the code to use hdlcodeadvisor.

R2020a

7-2

https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/appropriate-usage-of-delay-blocks-as-registers.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/modeling-efficient-multiplication-and-division-operations-for-fpga-targeting.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/using-persistent-variables-inside-matlab-function-blocks-for-hdl-code-generation.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/using-persistent-variables-inside-matlab-function-blocks-for-hdl-code-generation.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/guidelines-for-hdl-code-generation-using-stateflow-charts.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/supported-blocks-settings-guidelines.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/getting-started-with-the-hdl-model-checker.html

Block Enhancements

Inverse of streaming matrix input using Gauss-Jordan elimination
method
HDL Coder now supports the Gauss-Jordan elimination algorithm for performing a streaming matrix
inverse computation. You can use square matrices, and use both single and double data types
when computing the matrix inverse by using Gauss-Jordan elimination.

Previously, you computed the inverse of a streaming matrix input by using the Cholesky
decomposition method. In R2020a, you use the AlgorithmType HDL block property of the
MatrixInverse block to specify whether you want to compute the inverse of a streaming input matrix
by using GaussJordanElimination or CholeskyDecomposition. The default AlgorithmType is
GaussJordanElimination.

For an example, see HDL Code Generation for Streaming Matrix Inverse System Object.

Improvement to readability of bus element port names in HDL code
Previously, when you generated HDL code for models that contained bus element ports, the ports
were named according to the format portName_Inport_portNumber_signalName or
portName_Outport_portNumber_signalName.

Starting in R2020a, HDL Coder uses more readable and concise names in the generated code for bus
element ports. The ports now use the format portName_signalName irrespective of whether the
port is an input or output bus element port.

For example, consider this model that uses Bus Element In ports.

The generated VHDL code shows the entity declaration for the bus element ports as illustrated in the
table.

 Block Enhancements

7-3

https://www.mathworks.com/help/releases/R2020a/hdlcoder/examples/hdl-code-generation-streaming-matrix-inverse-system-object.html

Before R2020a In R2020a
ENTITY Subsystem1 IS
 PORT(In1_Inport_1_sig1_en : IN std_logic;
 In1_Inport_1_sig2_en : IN std_logic;
 In1_Inport_1_sig3_en : IN std_logic;
 In1_Inport_1_sig4_en : IN std_logic;
 Out1_sig1_en : OUT std_logic;
 Out1_sig2_en : OUT std_logic;
 Out1_sig3_en : OUT std_logic;
 Out1_sig4_en : OUT std_logic
);
END Subsystem1;

ENTITY Subsystem IS
 PORT(In1_sig1_en : IN std_logic;
 In1_sig2_en : IN std_logic;
 In1_sig3_en : IN std_logic;
 In1_sig4_en : IN std_logic;
 Out1_sig1_en : OUT std_logic;
 Out1_sig2_en : OUT std_logic;
 Out1_sig3_en : OUT std_logic;
 Out1_sig4_en : OUT std_logic
);
END Subsystem;

See Use Bus Signals to Improve Readability of Model and Generate HDL Code.

New Fixed-Point Designer Simulink block library
Fixed-Point Designer now has a Simulink block library for math operations and matrix operations.
These blocks use hardware-friendly control signals and provide an efficient hardware
implementation. These blocks support HDL code generation using HDL Coder.

Math Operations

Use the Hyperbolic Tangent HDL Optimized block to compute the CORDIC-based hyperbolic tangent.

Use the Normalized Reciprocal HDL Optimized block to compute the normalized reciprocal of an
input value.

Matrix Operations

The Real Burst QR Decomposition and Complex Burst QR Decomposition blocks use Givens rotations
to compute the QR decomposition of an input matrix.

Use the Real Burst Matrix Solve Using QR Decomposition or Complex Burst Matrix Solve Using QR
Decomposition blocks to compute the value of x in the equation Ax = b.

The Real Burst Q-less QR Decomposition and Complex Burst Q-less QR Decomposition blocks use
Givens rotations to compute the R factor of the QR decomposition without computing Q.

Use the Real Burst Matrix Solve Using Q-less QR Decomposition or Complex Burst Matrix Solve
Using Q-less QR Decomposition blocks to compute the value of x in the equation A'Ax = b.

LTE HDL Toolbox name change to Wireless HDL Toolbox
The Wireless HDL Toolbox name reflects the expansion of the toolbox to include algorithms for 5G
New Radio (NR) and general communications designs along with LTE algorithms.

This table shows the updated library hierarchy.

R2020a

7-4

https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/use-bus-signals-to-improve-readability-of-model.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/hyperbolictangenthdloptimized.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/normalizedreciprocalhdloptimized.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/realburstqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/realburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/realburstqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/realburstmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstmatrixsolveusingqlessqrdecomposition.html

Old Libraries Updated Libraries

All blocks from the LTE HDL Toolbox™ libraries are available in the Wireless HDL Toolbox libraries.
The blocks formerly in the General Communications library are now split between the Error
Detection and Correction and Modulation libraries. This table shows the updated location of each
of these blocks.

Block Updated Library
Convolutional Encoder Error Detection and Correction
Depuncturer Error Detection and Correction
OFDM Demodulator Modulation
Puncturer Error Detection and Correction
Viterbi Decoder Error Detection and Correction

5G NR Signal Synchronization Reference Application: Use primary and
secondary synchronization signals (PSS and SSS) to detect connection
to valid cell
The NR HDL Cell Search (Wireless HDL Toolbox) reference application, in Wireless HDL Toolbox,
performs PSS and SSS signal synchronization as per the 5G NR standard. This design supports HDL
code generation with HDL Coder and is ready for deployment to hardware.

There is also a NR HDL Cell Search MATLAB Reference (Wireless HDL Toolbox) example that shows
how to model the 5G NR cell search hardware algorithm in MATLAB as a step towards developing a
Simulink HDL implementation. This MATLAB reference is then used to verify the Simulink reference
application model.

5G NR Polar Encoder and Decoder, 5G NR LDPC Encoder and Decoder
blocks
These blocks in Wireless HDL Toolbox provide hardware-friendly implementations that comply with
the 5G NR standard.

• NR Polar Encoder and NR Polar Decoder
• NR LDPC Decoder and NR LDPC Encoder

OFDM Modulator, OFDM Channel Estimator, and RS Decoder blocks
These blocks in Wireless HDL Toolbox provide hardware-friendly implementations that support
standard and custom communication protocols.

• OFDM Modulator

 Block Enhancements

7-5

https://www.mathworks.com/help/releases/R2020a/wireless-hdl/examples/nr-hdl-cell-search.html
https://www.mathworks.com/help/releases/R2020a/wireless-hdl/examples/nr-hdl-cell-search-matlab-reference.html
https://www.mathworks.com/help/releases/R2020a/wireless-hdl/ref/nrpolarencoder.html
https://www.mathworks.com/help/releases/R2020a/wireless-hdl/ref/nrpolardecoder.html
https://www.mathworks.com/help/releases/R2020a/wireless-hdl/ref/nrldpcdecoder.html
https://www.mathworks.com/help/releases/R2020a/wireless-hdl/ref/nrldpcencoder.html
https://www.mathworks.com/help/releases/R2020a/wireless-hdl/ref/ofdmmodulator.html

• OFDM Channel Estimator
• RS Decoder

Variable CIC Decimation Factor: Specify decimation factor as an input
to the CIC Decimation HDL Optimized block
You can specify the decimation factor for the CIC Decimation HDL Optimized block as an input port.
You can also now optionally enable automatic gain correction.

These features are also available when using the dsp.HDLCICDecimation System object.

To use this block and object you must have DSP System Toolbox installed.

Gigasample-per-second (GSPS) NCO: Generate frame-based output
from HDL-optimized NCO for high speed applications (requires HDL
Coder for code generation)
You can now generate frame-based waveforms from the NCO HDL Optimized block. The block returns
a vector where each element represents a sample in time. Set the Samples per frame parameter to
the desired output vector size.

This capability increases throughput in hardware designs. For a list of all blocks that support frame-
based input and output for HDL code generation, see High Throughput HDL Algorithms (DSP System
Toolbox).

This feature is also available when using the dsp.HDLNCO System object. Set the SamplesPerFrame
property to the desired output vector size.

To use this block and object you must have DSP System Toolbox installed.

Corner Detector Block and System Object: Detect features using FAST
algorithm
The Corner Detector block, in Vision HDL Toolbox, detects corners using the features-from-
accelerated-segment test (FAST) algorithm. You can specify a minimum contrast threshold as a
parameter or port and select from three metrics that determine a corner: 5 out of 8, 7 out of 12, or 9
out of 16 pixels. These metrics specify how many pixels in a circle of pixels must meet the minimum
contrast for the center pixel to be considered a corner.

Line Buffer with No Padding: Specify option to not add padding for
blocks that use line buffer memory
You can now configure the Line Buffer block and blocks that use an internal line buffer to not add
padding around the boundaries of the active frame. This option reduces the hardware resources used
by the block and the blanking required between frames but affects the accuracy of the output pixels
at the edges of the frame. To use this option, set the Padding method parameter to None.

This change affects these blocks:

R2020a

7-6

https://www.mathworks.com/help/releases/R2020a/wireless-hdl/ref/ofdmchannelestimator.html
https://www.mathworks.com/help/releases/R2020a/wireless-hdl/ref/rsdecoder.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/cicdecimationhdloptimized.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.hdlcicdecimation-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/ncohdloptimized.html
https://www.mathworks.com/help/releases/R2020a/dsp/ug/high-throughput-hdl-algorithms.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.hdlnco-system-object.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/cornerdetector.html

• Line Buffer
• Bilateral Filter
• Corner Detector
• Edge Detector
• Image Filter
• Median Filter
• Binary morphology blocks: Closing, Dilation, Erosion, and Opening

To use these blocks you must have Vision HDL Toolbox installed.

 Block Enhancements

7-7

https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/linebuffer.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/bilateralfilter.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/cornerdetector.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/edgedetector.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/imagefilter.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/medianfilter.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/closing.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/dilation.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/erosion.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/opening.html

Code Generation and Verification

Obfuscated HDL Output: Generate plain-text HDL code with
randomized identifier names
To share HDL code with a third party without revealing the intellectual property, you can now
generate obfuscated HDL code from Simulink models. Obfuscation reduces readability of the code.
The generated HDL code does not have any comments, newlines, or spaces, and replaces identifier
names with random names.

When you enable HDL code obfuscation and generates code, HDL Coder produces a Code
Obfuscation Report. The report displays the status of HDL code obfuscation and whether the model
uses Configuration Parameters that are incompatible with code obfuscation.

See Obfuscate Generated HDL Code from Simulink Models.

Improvements to HDL code generated for Stateflow charts
When you generate HDL code from Stateflow charts, HDL Coder may create intermediate variables
that are related to state transitions or perform certain computations. In previous releases, the
intermediate variables were sometimes defined and used only in one branch of a conditional
statement such as an if-else or case statement. Deploying this HDL code to a target device may result
in the synthesis tool inferring a latch.

In R2020a, when the code generator identifies temporary variables that are not used in all branches
of a conditional statement, it initializes these temporary variables to zero. This coding style prevents
synthesis tools from potentially inferring a latch in the HDL code.

For example, consider this Stateflow Chart.

R2020a

7-8

https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/obfuscate-generated-hdl-code-from-simulink-models.html

The generated VHDL code shows that, in R2020a, as the temporary variable add_temp is used only
in the ELSE branch, the variable is initialized to zero before entering the CASE statement. This
initialization avoids a potential latch inference by the synthesis tool.

 Code Generation and Verification

7-9

Before R2020a In R2020a
 VARIABLE add_temp : unsigned(11 DOWNTO 0); BEGIN
 is_fault_dly_sm_next <= is_fault_dly_sm;
 cnt_next <= cnt;
 --Gateway: inferred_latches/fault_dly_sm
 fault_out <= '0';
 --During: inferred_latches/fault_dly_sm
 CASE is_fault_dly_sm IS
 WHEN IN_sStartup =>
 --During 'sStartup'
 IF cnt = startup_time_unsigned THEN
 --Transition
 is_fault_dly_sm_next <= IN_sWait;
 --Entry 'sWait'
 cnt_next <= to_unsigned(16#000#, 11);
 fault_out <= '0';
 ELSE
 add_temp := resize(cnt, 12) + to_unsigned(16#001#, 12);
 IF add_temp(11) /= '0' THEN
 cnt_next <= "11111111111";
 ELSE
 cnt_next <= add_temp(10 DOWNTO 0);
 END IF;
 END IF;

 VARIABLE add_temp : unsigned(11 DOWNTO 0); BEGIN
 add_temp := to_unsigned(16#000#, 12);
 is_fault_dly_sm_next <= is_fault_dly_sm;
 cnt_next <= cnt;
 --Gateway: inferred_latches/fault_dly_sm
 fault_out <= '0';
 --During: inferred_latches/fault_dly_sm
 CASE is_fault_dly_sm IS
 WHEN IN_sStartup =>
 --During 'sStartup'
 IF cnt = startup_time_unsigned THEN
 --Transition
 is_fault_dly_sm_next <= IN_sWait;
 --Entry 'sWait'
 cnt_next <= to_unsigned(16#000#, 11);
 fault_out <= '0';
 ELSE
 add_temp := resize(cnt, 12) + to_unsigned(16#001#, 12);
 IF add_temp(11) /= '0' THEN
 cnt_next <= "11111111111";
 ELSE
 cnt_next <= add_temp(10 DOWNTO 0);
 END IF;
 END IF;

R2020a

7-10

Speed and Area Optimizations

Upsampling signals without latency using Rate Transition blocks
Previously, to generate HDL code for the Rate Transition block, in the Block Parameters dialog box,
you selected the Ensure data integrity during data transfer and Ensure deterministic data
transfer (maximum delay) check boxes. In this case, the Rate Transition block incurred a unit
delay of latency during simulation and in the generated HDL code.

In R2020a, you can upsample your signals by using the Rate Transition block without incurring the
unit delay of latency. The Rate Transition block acts like a no-op for simulation and as a wire in the
generated HDL code.

To perform this upsampling, in the Block Parameters dialog box of the Rate Transition block:

• Clear the Ensure data integrity during data transfer check box.

Clearing this check box makes the Ensure deterministic data transfer (maximum delay)
check box to disappear.

• Specify a fractional value of 1/n for Sample time multiple where n is an integer. This setting
configures the output port sample time of the block to be an integer multiple of the input port
sample time. You can choose any value for the block parameter Output port sample time
options.

 Speed and Area Optimizations

7-11

https://www.mathworks.com/help/releases/R2020a/simulink/slref/ratetransition.html

IP Core Generation and Hardware Deployment

AXI4-Stream for MIMO: Generate IP cores with multiple input and
output channels
You can now generate an HDL IP core with multiple AXI4-Stream interfaces, AXI4-Stream Video
interfaces, or AXI4 Master interfaces.

To specify more than one AXI4-Stream, AXI4-Stream Video, or AXI4 Master channel. run the IP Core
Generation workflow for your Generic Xilinx Platform or Generic Altera Platform. In
the Set Target Interface task, on the Target platform interface table, you can then select Add
more ... to specify additional Target platform interfaces. After you run this task, the additional
interfaces specified are saved on the DUT subsystem as the HDL block property
AdditionalTargetInterfaces.

If you are targeting your own custom reference design, in the plugin_rd file, you can specify
insertion of multiple AXI4-Stream interfaces and AXI4-Stream Video interfaces by using an
addAXI4StreamInterface method and an addAXI4StreamVideoInterface method of the
hdlcoder.ReferenceDesign class.

To learn more, see Generate HDL IP Core with Multiple AXI4-Stream and AXI4 Master Interfaces.

For an example, see Running Audio Filter with Multiple AXI4-Stream Channels on ZedBoard.

High-Bandwidth AXI Master: Generate IP cores with up to 512 bits on
AXI4 Master data ports
When you generate an HDL IP core with AXI4 Master interfaces, you can now use word lengths of up
to 512 bits on the data port. Use the larger bit widths to integrate your HDL IP core into larger
reference designs, and to achieve higher throughput when you use the AXI4 Master port to access
external DDR memory.

Simulink supports fixed-point data types with word length of up to 128 bits. To model your DUT ports
with word lengths greater than 128 bits, use vector data types. You can map these DUT Data ports to
AXI4 Master Read or AXI Master Write ports in the Target platform interface table, generate
the HDL IP core, and integrate the IP core into your Vivado or Qsys reference designs.

See Model Design for AXI4 Master Interface Generation.

Performance improvement to AXI4 Master write operations
Previously, while performing an AXI4 Master write operation, when you wrote multiple bursts of data,
the AXI4 Master wrote the first burst of data and then waited for the response channel before issuing
the next burst. The response is indicated by assertion of the wr_bvalid signal, which then asserts
the wr_complete signal, after which the AXI4 Master sends the next burst of data. In this case, the
average latency between two data bursts can be approximately 20 clock cycles, which can result in a
large latency overhead, especially for multiple, small, continuous bursts.

In R2020a, the AXI4 Master write operation is more pipelined, which reduces the latency overhead
and improves throughput. In this case, the wr_complete signal does not wait for the wr_bvalid
signal to assert. The average latency between two data bursts can be approximately 3 clock cycles,

R2020a

7-12

https://www.mathworks.com/help/releases/R2020a/hdlcoder/ref/hdlcoder.referencedesign.addaxi4streaminterface.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ref/hdlcoder.referencedesign.addaxi4streamvideointerface.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/map-dut-ports-to-multiple-axi-interfaces.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/running-audio-filter-with-multiple-axi4-stream-channels.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/model-design-for-axi4-master-interface-generation.html

which is a significant improvement to write throughput, especially for multiple, small, continuous
bursts.

The AXI4 Master protocol supports a maximum burst size of 256. When you have a large burst of size
greater than 256, the AXI Master interface in the generated HDL IP core divides the large burst into
multiple smaller bursts with size 256. With the improvement to write throughput in R2020a, you see
a performance improvement to the AXI4 Master write operation even for large bursts of data.

For additional performance improvement, instead of using the wr_complete signal, you can use the
wr_ready signal as an indicator for starting the next burst. When wr_ready asserts, the AXI4
Master can write the next data, which further reduces the average latency between two data bursts
to less than 3 clock cycles.

See Model Design for AXI4 Master Interface Generation.

Dynamic customization of reference design based on reference design
parameters
In R2020a, you can customize your reference design dynamically based on the value specified for the
reference design parameters. You specify the value by using a new callback function,
CustomizeReferenceDesignFcn, of the hdlcoder.ReferenceDesign class. By using this
callback function, you can customize the block design Tcl file, reference design interfaces, reference
design interface properties, and IP repositories in your reference design. For example, you can create
a reference design parameter that specifies the data bitwidth of the AXI4-Stream Interface master
and slave channels. In the callback function, you can add the AXI4-Stream interface by using the
chosen bitwidth value.

% ...

% Add AXI4-Stream interface by parameterizing data width

DataWidth = hRD.getParamValue(paramValue)

if ~isempty(DataWidth)
 hRD.addAXI4StreamInterface(
 'MasterChannelEnable', 'true', ...
 'SlaveChannelEnable', 'true', ...
 'MasterChannelConnection', 'ByPass_0.AXI4_Stream_Slave', ...
 'SlaveChannelConnection', 'ByPass_0.AXI4_Stream_Master', ...
 'MasterChannelDataWidth', DataWidth, ...
 'SlaveChannelDataWidth', DataWidth);
end

% ...

Save the callback function file to the same folder as the reference design definition file,
plugin_rd.m. You can then reference the callback function inside the plugin_rd file.

In this example, when you target your custom reference design for the board, in the Set Target
Reference Design task, the Data Width parameter is displayed. If you specify a value for the Data
Width such as 64 and run this task, in the Set Target Interface task, the callback function is
evaluated. The AXI4-Stream interface that has 64-bit data width is displayed in the Target platform
interface table.

See Customize Reference Design Dynamically Based on Reference Design Parameters.

 IP Core Generation and Hardware Deployment

7-13

https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/model-design-for-axi4-master-interface-generation.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ref/hdlcoder.referencedesign.customizereferencedesignfcn.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/customize-reference-design-dynamically-based-on-reference-design-parameters.html

Option to insert JTAG MATLAB AXI Master in standalone FPGA
reference designs (requires HDL Verifier)
Previously, you could insert the JTAG MATLAB AXI Master IP in Intel and Xilinx SoC reference
designs, and FPGA reference designs that already had an AXI4 slave interface or used the
hRD.addAXI4SlaveInterface.

In R2020a, you can also specify insertion of the JTAG MATLAB AXI Master IP in standalone FPGA
reference designs that do not have an AXI4 slave interface or do not use the
hRD.addAXI4SlaveInterface. By using the JTAG MATLAB AXI Master IP, you can easily access the
AXI registers in the generated DUT IP core on an FPGA board from MATLAB through the JTAG
connection.

See Specify Insertion of JTAG MATLAB as AXI Master IP and https://www.mathworks.com/help/
releases/R2020a/hdlcoder/examples/ip-core-generation-workflow-without-an-embedded-arm-
processor-xilinx-kintex-7-kc705.html.

socExportReferenceDesign Function: Automatically create reference
design (requires SoC Blockset)
Use the socExportReferenceDesign function to export a custom reference design from your SoC
Blockset Simulink model. The socExportReferenceDesign function requires SoC Blockset.

You can then use IP Core Generation workflow to generate a custom IP core and integrate it into
your SoC reference design. For an example, see Export Custom Reference Design (SoC Blockset).

Intel Quartus Pro Targeting: Synthesize and implement generated HDL
code on Intel FPGAs by using HDL Workflow Advisor
You can now specify Intel Quartus Pro as the Synthesis tool and then select Generic ASIC/
FPGA as the Target workflow to synthesize and implement the generated HDL code on Intel Quartus
Pro FPGA devices.

HDL Coder supports these family of devices with Intel Quartus Pro:

• Arria 10
• Cyclone 10 GX
• Stratix 10

R2020a

7-14

https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/define-custom-reference-design-with-custom-parameters-and-callback-functions.html#mw_d2418b13-df7f-4cf6-a573-b9665efed3a7
https://www.mathworks.com/help/releases/R2020a/hdlcoder/examples/ip-core-generation-workflow-without-an-embedded-arm-processor-xilinx-kintex-7-kc705.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/examples/ip-core-generation-workflow-without-an-embedded-arm-processor-xilinx-kintex-7-kc705.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/examples/ip-core-generation-workflow-without-an-embedded-arm-processor-xilinx-kintex-7-kc705.html
https://www.mathworks.com/help/releases/R2020a/soc/ref/socexportreferencedesign.html
https://www.mathworks.com/help/releases/R2020a/soc/ug/export-custom-reference-design-example.html

Before you specify Intel Quartus Pro as the Synthesis tool, set up the tool path by using the
hdlsetuptoolpath function. Make sure that you have already installed Intel Quartus Pro.

hdlsetuptoolpath('ToolName','Intel Quartus Pro','ToolPath',...
 'C:\intel\19.2_pro\quartus\bin64');

See also Tool Setup and HDL Language Support and Supported Third-Party Tools and Hardware.

Speedgoat IO Modules IO331 and IO331-6 being removed
Speedgoat IO modules Speedgoat IO331 and its variant Speedgoat IO331-6 that are based on
Xilinx ISE, and use the Xilinx Spartan®-6 FPGA with the Simulink Real-Time FPGA I/O workflow
will no longer be supported in R2020b.

Compatibility Considerations
In R2020a, you can still run the Simulink Real-Time FPGA I/O workflow with the Speedgoat IO
modules Speedgoat IO331 and Speedgoat IO331-6. However, in R2020b, if you load a pre-
R2020b model that was saved with the target platform Speedgoat IO331 or Speedgoat IO331-6,
and then open the HDL Workflow Advisor, HDL Coder generates a warning. To avoid this warning,
when you run the Simulink Real-Time FPGA I/O workflow, use Speedgoat IO333-325K or a
later Speedgoat IO module that is based on Xilinx Vivado.

See also HDL Language Support and Supported Third-Party Tools and Hardware and Xilinx HDL
Support with Speedgoat IO Modules.

Updates to supported software
HDL Coder has been tested with:

 IP Core Generation and Hardware Deployment

7-15

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/hdlsetuptoolpath.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/gs/toolbox-setup.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/gs/language-and-tool-version-support.html
https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software
https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software

• Xilinx Vivado Design Suite 2019.1
• Intel Quartus Pro 19.2

See HDL Language Support and Supported Third-Party Tools and Hardware.

R2020a

7-16

https://www.mathworks.com/help/releases/R2020a/hdlcoder/gs/language-and-tool-version-support.html

Simscape Hardware-in-the-Loop Workflow

Simscape Hardware-in-the-Loop: Generate HDL implementation model
from multiple Simscape networks
When your Simscape model contains many switching elements, the state-space representation can
contain a large number of modes. The generated HDL implementation model for such a large design
can consume a significantly large number of resources, and may even fail to synthesize on the target
FPGA device.

To reduce the number of modes, you can now partition the Simscape network into multiple networks,
and then run the Simscape HDL Workflow Advisor. The generated HDL implementation model
contains an HDL Subsystem that models the state-space equations for each Simscape network. You
can also generate the validation logic that compares each Simscape network with the corresponding
state-space implementation in the HDL implementation model numerically.

See Partition Simscape Models Containing a Large Network into Multiple Smaller Networks and
Generate HDL Code for Simscape Models with Multiple Networks.

Reduction in latency of HDL implementation model generated from
Simscape algorithm
When you run the Simscape HDL Workflow Advisor, the Rate Transition blocks in the HDL
implementation model now have the Ensure data integrity during data transfer check box in the
Block Parameters dialog box cleared. When this parameter is disabled, the Rate Transition blocks
upsample the input without incurring a unit delay of latency. This reduces the latency of the HDL
implementation model from 2 to 1.

This latency reduction also enables the input values to the state space equations to be consumed one
clock cycle earlier. For details on how HDL Coder upsamples the input signal to a Rate Transition
block without incurring additional latency, see the release note “Upsampling signals without latency
using Rate Transition blocks” on page 7-11.

Improvement to single-rate resource sharing in HDL implementation
model
In R2020a, you can share the masked subsystem blocks that perform state updates and compute the
output. For example, consider the HDL implementation model generated from the Simscape bridge
rectifier example model, sschdlexBridgeRectifierExample.

 Simscape Hardware-in-the-Loop Workflow

7-17

https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/partition-large-simscape-network-smaller-networks.html
https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/generate-hdl-multiple-simscape-networks.html
https://www.mathworks.com/help/releases/R2020a/simulink/slref/ratetransition.html

Inside the HDL Algorithm subsystem, if you set a SharingFactor of 2 on the Multiply State and
Multiply Input subsystems, you can now share these subsystems, which saves area on the target
FPGA device.

For an example, see Generate HDL Code for Simscape Models.

R2020a

7-18

https://www.mathworks.com/help/releases/R2020a/hdlcoder/ug/generate-hdl-code-from-simscape-model.html

R2019b

Version: 3.15

New Features

Bug Fixes

8

Model and Architecture Design

HDL code generation for MATLAB Function block in native floating-
point mode
In R2019b, HDL Coder supports code generation for the MATLAB Function block by using floating-
point data types in Native Floating Point mode. You can use a wider subset of MATLAB
functions to develop complex floating-point algorithms.

By default, floating-point support in HDL Coder uses a new MATLAB datapath architecture of the
MATLAB Function block. This architecture treats the MATLAB Function block like a Subsystem block.
The generated HDL code with the MATLAB datapath architecture is more readable.

To learn more, see Generate Target-Independent HDL Code with Native Floating-Point.

HDL Coder contextual tab on Simulink Toolstrip
In R2019b, the Simulink Toolstrip replaces the Simulink menu bar. For details, see Simulink
Toolstrip: Access and discover Simulink capabilities when you need them in the Simulink
release notes.

Several HDL Coder features and buttons are located in contextual tabs. The Simulink Toolstrip
contextual tabs appear only when you need to access them. To access the HDL Code tab, open the
HDL Coder app from the Apps tab on the Simulink Toolstrip.

Access options in the HDL Code tab, such as:

• To display the HDL Block Properties for a block or a Subsystem in your model, select that block or
Subsystem. The options change contextually depending on what you select in the model.

• To access the HDL Model Checker, click the HDL Code Advisor button.
• To change report settings, in the Settings tab, select Report Options. To access the reports,

click the Open Report button. The Code Generation Report opens if this report exists. Otherwise,
the HDL Check Report opens.

See Set HDL Code Generation Options.

Documentation revision for HDL code generation support for blocks
Previously, the HDL Coder documentation contained a page for each supported block that described
the options and limitations for HDL code generation. This information is now in the Extended
Capabilities > HDL Code Generation section of the block page in the product that owns the block.
For instance, see the HDL Code Generation section of the Divide block page in the Simulink
documentation. This change consolidates information about simulation and HDL code generation to a
single page for each block and avoids duplicate search results.

R2019b

8-2

https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/generate-target-independent-hdl-code-with-native-floating-point-libraries.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/set-hdl-code-generation-options.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/divide.html#f6-2156461_hdl
https://www.mathworks.com/help/releases/R2019b/simulink/slref/divide.html

For a list of which blocks are supported for HDL code generation, click Blocks in the blue bar at the
top of the Help window, and then select the HDL code generation check box at the bottom of the
left column. The blocks are listed in their respective products. Use the table of contents in the left
column to navigate between products and categories.

 Model and Architecture Design

8-3

Block Enhancements

Discrete FIR Filter HDL Optimized block supports complex coefficient
values
The Discrete FIR Filter HDL Optimized block from the DSP System Toolbox now supports complex-
valued coefficients. If both coefficients and input data are complex, the block implements each filter
tap with three multipliers. If either data or coefficients are complex but not both, the block uses two
multipliers for each filter tap. You can use complex coefficients with all architectures and with
programmable coefficients.

This feature is also available with the dsp.HDLFIRFilter System object.

Process high-frame-rate or high-resolution video with multipixel
streaming interface
To support high-frame-rate or high-resolution video processing, such as 4k UHD, the Vision HDL
Toolbox streaming video interface can now process 4 or 8 pixels on each cycle.

When you configure the Frame To Pixels and Pixels To Frame blocks, set the Number of pixels
parameter to 4 or 8. With this setting, the output of the Frame To Pixels block is a vector of 4 or 8
pixel values on each time step.

The Image Filter, Edge Detector, and Median Filter blocks now support input and output vectors of 4
or 8 pixels. The ctrl ports remain scalar, and the control signals in the pixelcontrol bus apply to
all pixels in the vector. The Line Buffer block can accept an input vector of 4 or 8 pixels and returns a
KernelHeight-by-NumberOfPixels matrix.

Video formats for multipixel streams must have horizontal dimensions divisible by the Number of
pixels. These horizontal dimensions are: Active pixels per line, Total pixels per line, Front
porch, and Back porch. The standard video protocols 480p, 720p, 1080p, and 4k UHD support both
4 and 8 pixels at a time.

This feature is not supported for use with System objects.

OFDM Demodulator, Convolutional Encoder, and Puncturer blocks for
custom wireless communication protocols
LTE HDL Toolbox provides these blocks, which are configurable to support most wireless
communication protocols:

• The OFDM Demodulator block supports configurable cyclic prefix and FFT length.
• The Convolutional Encoder and Puncturer blocks support continuous, terminated, and truncated

modes.

Symbol Demodulator and 1536-point FFT for LTE and NR (5G) designs
LTE HDL Toolbox provides these blocks:

R2019b

8-4

https://www.mathworks.com/help/releases/R2019b/dsp/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.hdlfirfilter-system-object.html

• The FFT 1536 block implements a 1536-point FFT by using a single 512-point FFT.
• The LTE Symbol Demodulator and NR Symbol Demodulator blocks demodulate complex phase-

shift keying (PSK) or quadrature amplitude modulation (QAM) symbols using either hard or soft
decision decoding.

HDL-optimized CIC Decimation block and System Object
If you have DSP System Toolbox installed, you can use the CIC Decimation HDL Optimized block to
downsample signals by using a CIC filter. The block provides an efficient hardware implementation
and uses hardware-friendly control signals. The block supports HDL code generation with HDL Coder.

This algorithm is also available as a System object, dsp.HDLCICDecimation.

Enhancements to fixed-point Division and Reciprocal operators
In R2019b, when you use the Divide and Reciprocal blocks with fixed-point data types, you can
specify a new ShiftAdd architecture. This architecture uses a nonrestoring division algorithm that
performs multiple shift and add operations to compute the quotient. This architecture provides
improved accuracy compared to the Newton-Raphson approximation method. You also achieve a
higher maximum clock frequency on the target FPGA device.

For example, this table illustrates the performance of the division operation by using the ShiftAdd
architecture on a Xilinx Virtex-7 FPGA.

Division
Architecture

Latency Fmax (MHz) LUTs Registers

Linear 0 29.69 451 -
ShiftAdd 20 534.19 444 636

See UsePipelines.

FWFT mode for HDL FIFO block
In R2019b, the code generator supports a First Word Fall Through (FWFT) mode for the HDL FIFO
block. In this mode, the first word falls through to the output before you provide the read enable
signal. The FWFT mode is especially useful when you apply the back-pressure with AXI4-Stream
interfaces.

To specify this mode, in the Block Parameters dialog box of the HDL FIFO block, set Mode to FWFT.
The FWFT mode provides you with the data on the same clock cycle that you request. The Classic
mode provides you with the data on the clock cycle after you request.

HDL code generation enhancements to matrix support
In R2019b, HDL Coder extends the matrix data type support to these blocks:

• Additional blocks in the Math Operations library including Increment Stored Integer, Increment
Real World, Decrement Stored Integer, Decrement Real World, Sum of Elements, and Product of
Elements

 Block Enhancements

8-5

https://www.mathworks.com/help/releases/R2019b/ltehdl/ref/ltesymboldemodulator.html
https://www.mathworks.com/help/releases/R2019b/ltehdl/ref/nrsymboldemodulator.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/cicdecimationhdloptimized.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.hdlcicdecimation-system-object.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/block-implementation-parameters.html#mw_ca10b040-2a21-431a-b25a-0ca430d0962c
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ref/hdlfifo.html

• Blocks in the HDL Operations library including Multiply-Add and Multiply-Accumulate
• Discrete-Time Integrator

See Signal and Data Type Support.

Block-level option to control HDL code generated for Multiport Switch
block
Previously, when you generated HDL code for the Multiport Switch block, HDL Coder used if-else
statements in the Verilog code and when-else statements in the VHDL code.

Starting in R2019b, you can specify whether you want to generate HDL code with case statements or
if-else statements when you use a Multiport Switch block. By default, HDL Coder generates if-else
statements. To specify generation of case statements in the Verilog code or case-when statements in
the VHDL code, in the HDL Block Properties dialog box for the Multiport Switch block, on the
General tab, set CodingStyle to case.

HDL code generation for partitioning of mask parameters in For Each
Subsystem
HDL Coder now supports code generation for Simulink models that partition the tunable mask
parameters inside a For Each Subsystem. Inside the For Each Subsystem block, you can use the
tunable parameter as the Constant value in Constant blocks and as the Gain parameter in Gain
blocks.

See For Each and Generate HDL Code for Blocks Inside For Each Subsystem.

HDL code generation for Fcn block
In R2019b, you can generate HDL code for the Fcn block in Native Floating Point mode. The
block accepts single and double inputs and outputs a scalar value corresponding to the
mathematical expression that you specify for the block.

When you generate code, HDL Coder creates a Subsystem block with native floating-point operators
that compute the mathematical expression you specify on the block.

R2019b

8-6

https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/signal-and-data-type-support.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/block-implementation-parameters.html#mw_8759fc8a-90b4-451c-8e68-cb6ffa44fc81
https://www.mathworks.com/help/releases/R2019b/simulink/slref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/foreach.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/generate-hdl-code-for-blocks-inside-for-each-subsystem.html

Code Generation and Verification

UltraRAM mapping in Xilinx devices
In R2019b, when you deploy your design containing RAM blocks to a Xilinx target device that
contains UltraRAM memory, you can specify the attribute to map the RAM blocks to UltraRAM. In the
HDL RAMs library, except for Dual Port RAM and Dual Rate Dual Port RAM blocks, you can map all
other RAM blocks to UltraRAM.

See RAMDirective.

 Code Generation and Verification

8-7

https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/block-implementation-parameters.html#mw_10175147-26c4-42de-887f-3893fa64157c

Speed and Area Optimizations

Enhanced optimization support for MATLAB Function block
In R2019b, HDL Coder supports various optimizations such as resource sharing and streaming inside
the MATLAB Function block with floating-point and fixed-point types. Previously, the MATLAB
Function blocks acted as a barrier to the optimizations. The optimizations that you specified applied
only to blocks that surrounded the MATLAB Function block.

To optimize the MATLAB Function blocks in your design, use the new MATLAB datapath
architecture of the MATLAB Function block. Floating-point support in HDL Coder uses this
architecture by default.

See HDL Optimizations Across MATLAB Function Block Boundary Using MATLAB Datapath
Architecture.

HDL optimizations across MATLAB Function blocks and other Simulink
blocks
In R2019b, HDL Coder supports various optimizations such as resource sharing and streaming for the
MATLAB Function block with floating-point and fixed-point types. You can use these optimizations
across the MATLAB Function block with other Simulink blocks and MATLAB Function blocks in your
model.

To use the optimizations, specify the new MATLAB datapath architecture of the MATLAB Function
block. Floating point support in HDL Coder uses this architecture by default. HDL Coder treats the
MATLAB datapath architecture of the block as a regular Subsystem block. The code generator
converts the MATLAB algorithm to a Simulink block diagram.

For more information, see HDL Optimizations Across MATLAB Function Block Boundary Using
MATLAB Datapath Architecture.

Flattening of subsystems in presence of optimizations
Previously, when you used the hierarchy flattening optimization, you disabled optimizations such as
resource sharing and streaming. In R2019b, you can use the hierarchy flattening optimization
seamlessly in the presence of these optimizations. Flattening the subsystem hierarchy significantly
reduces the number of HDL source files generated from your Simulink model.

To flatten hierarchy, set FlattenHierarchy to On for the top-level DUT Subsystem.

See also Hierarchy Flattening.

R2019b

8-8

https://www.mathworks.com/help/releases/R2019b/simulink/slref/matlabfunction.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/hdl-optimizations-across-matlab-function-simulink-blocks.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/hdl-optimizations-across-matlab-function-simulink-blocks.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/matlabfunction.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/hdl-optimizations-across-matlab-function-simulink-blocks.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/hdl-optimizations-across-matlab-function-simulink-blocks.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/hierararchy-flattening.html

IP Core Generation and Hardware Deployment

Optimization of AXI4 slave readback logic
When your model contains many output registers and you want to read back data from multiple AXI4
slave registers, the read back logic becomes a long mux chain that can affect the target frequency. If
you select the Enable readback on AXI4 slave write registers setting in the Generate RTL Code
and IP Core task, the mux chain logic can further increase in length.

In R2019b, you can optimize the readback logic and achieve the target frequency that you want when
you run the IP Core Generation workflow by using the AXI4 slave port to pipeline register
ratio setting in the Generate RTL Code and IP Core task.

See Optimize AXI4 Slave Read Back Logic.

Customization of AXI4 Slave ID width in Generic IP Core Generation
workflow
Previously, when you defined multiple AXI Master interfaces to access the HDL DUT AXI4 slave
interface, you specified an ID width value in the reference design definition file depending on the
number of AXI Master interfaces that you wanted to connect to.

In R2019b, when you run the Generic IP Core Generation workflow for your Simulink model, you can
specify the AXI4 Slave ID Width from the HDL Workflow Advisor UI by using the AXI4 Slave ID
Width setting in the Generate RTL Code and IP Core task.

See Generate Board-Independent HDL IP Core from Simulink Model.

Option to insert JTAG MATLAB AXI Master in SoC reference designs
(requires HDL Verifier)
Starting in R2019b, you can specify insertion of the JTAG MATLAB AXI Master IP in the reference
design that you are targeting. By using the JTAG MATLAB AXI Master IP, you can easily access the
AXI registers in the generated DUT IP core on an FPGA board from MATLAB through the JTAG
connection. See also Set Up for MATLAB AXI Master (HDL Verifier).

To use this capability:

• You must have the HDL Verifier hardware support packages installed and downloaded. See
Download FPGA Board Support Package (HDL Verifier).

• Do not target standalone boards that do not have the hRD.addAXI4SlaveInterface or boards
that are based on Xilinx ISE.

For an example, see Using JTAG MATLAB as AXI Master to control the HDL Coder IP Core.

For more information and requirements for JTAG as AXI Master IP insertion when targeting your own
custom reference design, see Define Custom Parameters and Register Callback Function Handle.

 IP Core Generation and Hardware Deployment

8-9

https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/model-design-for-axi4-slave-interface-generation.html#mw_ac74d655-621a-4ed3-9f5a-b0c0f2b47935
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/generate-a-custom-ip-core.html
https://www.mathworks.com/help/releases/R2019b/hdlverifier/ug/set-up-for-matlab-axi-master.html
https://www.mathworks.com/help/releases/R2019b/hdlverifier/ug/download-fpga-board-support-package.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/examples/using-jtag-as-axi-master-to-control-hdl-ip-core.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/define-custom-reference-design-with-custom-parameters-and-callback-functions.html#bvf54v5

Performance improvement to AXI Master interfaces in HDL DUT IP
core
When you generate an HDL IP core with AXI Master interfaces, if the data width of the downstream
slave device is wider than the data width of the DUT AXI Master, you might see a performance
improvement. In the generated HDL IP AXI Master interface, the AWCACHE and ARCACHE signals are
now set to 4'b0011, which enables the downstream slave to modify the data transfer pattern of AXI
transactions. Therefore, the slave can now pack data up to wider widths, which improves the AXI
Master performance.

For example, suppose you have an RFSoC that uses a data of AXI bitwidth 128-bit on the DUT AXI
Master and a data of AXI bitwidth 512-bit on the DDR4 memory controller IP. The AXI Interconnect
can now pack the data up to 512-bit and transfer up to four data in each clock cycle at the DDR
memory controller IP side, which reduces congestion on the DDR memory access.

Updates to supported software
HDL Coder has been tested with:

• Xilinx Vivado Design Suite 2018.3
• Intel Quartus Prime Standard Edition 18.1

See Supported Third-Party Tools and Hardware.

R2019b

8-10

https://www.mathworks.com/help/releases/R2019b/hdlcoder/gs/language-and-tool-version-support.html

Simscape Hardware-in-the-Loop Workflow

Enhanced HDL implementation model for Simscape and Simulink plant
in feedback loop
Previously, when you ran the Simscape HDL Workflow Advisor to generate an HDL implementation
model, the HDL Algorithm used Rate Transition blocks that ran the state update at a faster rate and
the output calculation at a slower rate. When you used a plant model that contained Simscape and
Simulink components inside a feedback loop, to balance the delays inside the loop, you had to use the
Zero latency strategy in Native Floating Point mode.

Starting in R2019b, the HDL Algorithm runs at the single, fastest rate. The Rate Transition blocks are
now placed outside the feedback loop. With this implementation, you can use the Min or Max latency
strategy in Native Floating Point mode. Using these strategies improves the area and timing of
the HDL implementation model on the target FPGA device.

For an example, see Troubleshoot Conversion of Simscape™ Permanent Magnet Synchronous Motor
to HDL-Compatible Simulink Model.

Number display of differential and algebraic variables in Simscape
HDL Workflow Advisor
When you run the Simscape HDL Workflow Advisor, if the Check switched linear task passes, the
task now reports the number of differential and algebraic variables. The task also provides links to
the blocks in your Simscape model that are related to these variables. Differential variables consume
a quadratic amount of multiplier resources on the target FPGA device. Algebraic variables consume a
linear amount of multiplier resources. You can use this information to determine how many multiplier
resources your Simscape design consumes on the FPGA device and whether your design is ready for
conversion to state-space representation.

See Simscape HDL Workflow Advisor Tips and Guidelines.

Separation of Get state-space parameters task for extracting and
discretizing equations
The Get state-space parameters task in the Simscape HDL Workflow Advisor is now split into two
tasks: Extract Equations and Discretize Equations. The Extract Equations task simulates the
model to extract the differential algebraic equations. The Discretize Equations task discretizes the
differential algebraic equations to state-space parameters.

Previously, if you changed only the Sample time of your model and left the model unchanged, to
obtain the modified state-space parameters, you reran the Get state-space parameters task.
Running this task could take a long time because it simulated the model to generate the differential
algebraic equations, which were later discretized to state-space parameters. In R2019b, if you change
the Sample time, you have to run only the Discretize Equations task. This task runs much faster
because it only has to discretize the differential algebraic equations to state-space parameters.

For more information, see Simscape HDL Workflow Advisor Tasks.

 Simscape Hardware-in-the-Loop Workflow

8-11

https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/troubleshoot-generate-implementation-model-from-simscape-pmsm.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/troubleshoot-generate-implementation-model-from-simscape-pmsm.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/simscape-hdl-workflow-advisor-tips-and-guidelines.html
https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/simscape-hdl-workflow-advisor-tasks.html

Generation of implementation model with coefficients as single type
and computation of results in double type
In R2019b, the Generate implementation model task has an enhanced layout. In the UI, you see
that the Floating-point precision setting has an additional option, Single coefficient,
double computation. By using this option, you can save memory usage on the target FPGA device
by storing the coefficients A, B, C, and D as single data types. The implementation model accuracy is
also improved compared to using Single as the Floating-point precision because the matrix
computations are performed in double precision.

To learn more, see Simscape HDL Workflow Advisor Tips and Guidelines.

R2019b

8-12

https://www.mathworks.com/help/releases/R2019b/hdlcoder/ug/simscape-hdl-workflow-advisor-tips-and-guidelines.html

R2019a

Version: 3.14

New Features

Bug Fixes

9

Model and Architecture Design

Protected Model Code Generation: Share protected Simulink models
with the option to allow HDL code generation
To share a model with a third-party vendor while hiding your model's intellectual property, protect the
model. In R2019a, you can create a protected model that supports HDL code generation. The model
that you want to protect must be a referenced model. In the parent model:

1 Right-click the model reference block that you want to protect and select Subsystem and Model
Reference > Create Protected Model for Selected Model Block.

2 Enable HDL code generation support for the protected model by selecting Use generated HDL
code in the Create Protected Model dialog box. You can enable password protection, which
protects the model contents by using AES-256 encryption.

You can generate HDL code for models that contain protected model references created for HDL code
generation. Before you generate HDL code, you must authorize the protected model references that
are password-protected. For authorization, right-click the protected model reference blocks and
select Authorize.

To learn more, see Model Protection.

Enhancements to single-precision native floating-point operators
support
ULP Accuracy and DSP Usage Improvements

ULP of these native floating-point operators with single data types have improved:

Operator Before R2019a In R2019a
log 3 1
asinh 3 2
atanh 4 3

In addition, the maximum latency value of the log operator increased from 20 to 27. The minimum
latency of the operator is unchanged.

See also ULP of Native Floating-Point Operators.

Improvements to Rounding Function

For the Rounding Function block, in R2019a, native floating-point in HDL Coder has:

• Support for custom latency.
• Improvements to area usage and target frequency.

R2019a

9-2

https://www.mathworks.com/help/releases/R2019a/hdlcoder/model-protection.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/mathfunction.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/trigonometricfunction.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/trigonometricfunction.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/numerical-considerations-with-native-floating-point.html#mw_693720de-d034-4692-9a92-87109e891def
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/roundingfunction.html

Additional block support with double-precision native floating-point
code generation
HDL Coder now supports code generation for these blocks that have double data types in the Native
Floating Point mode.

• Sqrt and Reciprocal Sqrt
• Rounding Function
• Data Type Conversion for conversions between double type and fixed-point data types
• MinMax
• Dot Product
• Sum of Elements and Product of Elements
• Single Port RAM, Simple Dual Port RAM, Dual Port RAM, and Dual Rate Dual Port RAM
• HDL FIFO
• Discrete-Time Integrator

To see all blocks that HDL Coder supports with double-precision data types, see Simulink Blocks
Supported with Native Floating-Point.

Additional Verilog constructs supported with HDL import
HDL import now has support for more synthesizable Verilog constructs that you can use when
importing your HDL file to generate the corresponding Simulink model. You can now use:

• Implicit data type conversion such as in arithmetic operations, data type conversion, bit selection,
and concatenation.

• Constructs that infer RAM blocks in your Simulink model. The blocks that are inferred include
Single Port RAM, Dual Port RAM, and the System-Object based RAM blocks, Single Port RAM
System and Dual Port RAM System.

• Constructs that infer Compare To Constant and Gain blocks in your model.
• for loop and loop generate constructs such as for-generate, if-generate, and case-generate

constructs.
• casex and casez statements.

To learn more about the supported constructs, see Supported Verilog Constructs for HDL Import.

For examples, see importhdl.

HDL Coder contextual tab in Simulink Toolstrip
In R2019a, you have the option to turn on the Simulink Toolstrip. See Simulink Toolstrip Tech
Preview replaces menus and toolbars in the Simulink Desktop release note in the Simulink
release notes for more details.

The Simulink Toolstrip includes contextual tabs that appear only when you need them. The HDL
Coder contextual tabs include options for completing actions that apply only to HDL Coder.

• To access the HDL Code tab, open the HDL Coder app from the Apps tab within the Simulink
Toolstrip.

 Model and Architecture Design

9-3

https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/sqrt.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/reciprocalsqrt.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/roundingfunction.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/datatypeconversion.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/minmax.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/dotproduct.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/sumofelements.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/productofelements.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/singleportram.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/simpledualportram.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/dualportram.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/dualratedualportram.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/hdlfifo.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/discretetimeintegrator.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/singleportram.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/dualportram.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/singleportramsystem.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/singleportramsystem.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/dualportramsystem.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/comparetoconstant.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/gain.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/supported-verilog-constructs-for-hdl-import.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/importhdl.html

• To access options in the HDL Code tab such as to display the HDL Block Properties for a block or
a Subsystem in your model, select that block or Subsystem. The options change contextually
depending on what you select in the model.

Documentation does not reflect addition of the HDL Coder contextual tabs.

HDL Coder Modeling Guidelines in Documentation
In R2019a, the HDL Coder documentation contains a list of modeling guidelines. These guidelines are
general recommendations for creating Simulink models, MATLAB Function blocks, and Stateflow
charts for code generation with HDL Coder.

The guidelines are divided into three sections:

• Model Design and Compatibility Guidelines: Consists of guidelines for usage of basic blocks, clock
and reset signals, buses and vectors, and how to model your design hierarchically.

• Guidelines for Supported Blocks and Data Type Settings: Consists of guidelines for using various
blocks in the HDL Coder block library and about the support data types.

• Guidelines for Speed and Area Optimizations: Consists of guidelines for optimizing your design for
speed or area for deployment on to the target hardware.

For more information, see HDL Modeling Guidelines.

R2019a

9-4

https://www.mathworks.com/help/releases/R2019a/hdlcoder/model-design-and-compatibility-guidelines.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/supported-blocks-settings-guidelines.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/speed-and-area-optimizations-guidelines.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/modeling-guidelines-for-hdl-code-generation.html

Block Enhancements

Streaming Matrix Multiply and Streaming Matrix Inverse Reference
Applications
HDL Coder provides two examples that illustrates how you can perform streaming matrix inverse and
streaming matrix multiplication for code generation.

• HDL Code Generation for Streaming Matrix Multiply System Object
• HDL Code Generation for Streaming Matrix Inverse System Object

Partition Offset parameter support in For Each Subsystem block
You can now generate HDL code for models that contain For Each Subsystem blocks with a nonzero
value specified for the Partition Offset parameter of the For Each block.

See also For Each and Generate HDL Code for Blocks Inside For Each Subsystem.

Enhancements to Assignment and Selector blocks
Enhancements to Assignment block

In R2019a, HDL Coder supports all indexing modes of the Assignment block for 1-D vectors and 2-D
matrices. With 1-D vectors, you can also use array of buses for all indexing modes of the block. To
learn more about modeling with array of buses, see Generating HDL Code for Subsystems with Array
of Buses.

Previously, the code generator supported Index vector (port) as the Index Option mode for 1-D
vectors and assignment to a scalar element for 2-D matrices. The supported modes for 1-D vectors
now include:

• Assign All
• Index vector (dialog)
• Index vector (port)
• Starting index (dialog)
• Starting index (port)

For 2-D matrices, you can now index both dimensions by using any combination of these indexing
modes. To learn more about the indexing modes of the block and how to use them, see Assignment.

Enhancements to Selector block

HDL Coder now supports all indexing modes of the Selector block for 1-D vectors and 2-D matrices.

Previously, the code generator supported all Index Option modes for 1-D vectors and indexing of
scalar elements for 2-D matrices. In R2019a, you can use any indexing mode for 1-D vectors and use
any combination of these indexing modes to index both dimensions of a 2-D matrix:

• Select All

 Block Enhancements

9-5

https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/hdl-code-generation-streaming-matrix-multiply-system-object.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/hdl-code-generation-streaming-matrix-inverse-system-object.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2019a/simulink/slref/foreach.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/generate-hdl-code-for-blocks-inside-for-each-subsystem.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/assignment.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/generate-hdl-code-for-subsystems-with-array-of-buses.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/generate-hdl-code-for-subsystems-with-array-of-buses.html
https://www.mathworks.com/help/releases/R2019a/simulink/slref/assignment.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/selector.html

• Index vector (dialog)
• Index vector (port)
• Starting index (dialog)
• Starting index (port)

To learn more about the indexing modes of the block and how to use them, see Selector.

Enhancements to Discrete FIR Filter HDL Optimized block and frame-
based Discrete FIR Filter block
Enhancements to Discrete FIR Filter HDL Optimized Block

The Discrete FIR Filter HDL Optimized block now provides the option to use programmable
coefficients with a fully parallel systolic architecture. When you use a partly serial systolic architect,
the block now optimizes symmetric and antisymmetric coefficients and provides an optional reset
port. To use this block, you must have DSP System Toolbox installed.

These features are also available with the dsp.HDLFIRFilter System object.

HDL code generation support for programmable coefficients with frame-based Discrete FIR
Filter block

The Discrete FIR Filter block now supports specifying coefficients from an input port when you use
frame-based input. To use this feature, you must have DSP System Toolbox.

LTE Reference Applications: Transmitter example and TDD support for
SIB recovery
LTE HDL Toolbox provides two examples:

• The LTE HDL PBCH Transmitter (LTE HDL Toolbox) reference application generates the baseband
waveform specified by LTE standard TS 36.211. The waveform includes the primary
synchronization signal (PSS), secondary synchronization signal (SSS), cell-specific reference
signals (Cell-RS), and the master information block (MIB) for transmission through the Physical
Broadcast Channel (PBCH).

• The LTE HDL SIB1 Recovery (LTE HDL Toolbox) reference application now shows how to decode
SIB1 data for LTE networks that use either TDD or FDD.

Both designs support HDL code generation with HDL Coder and are ready for deployment to
hardware.

OFDM Modulator block and LTE and 5G Symbol Modulator blocks
The OFDM Modulator block implements an algorithm for modulating LTE signals specified by LTE
standard TS 36.212. The block modulates an encoded resource grid into time-domain OFDM samples.

The LTE Symbol Modulator block and the NR Symbol Modulator block map groups of bits to complex
data symbols according to a dynamic modulation scheme. These supported modulation schemes are
specified by LTE standard TS 36.211 and 3GPP 5G standard TS 38.211.

R2019a

9-6

https://www.mathworks.com/help/releases/R2019a/simulink/slref/selector.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.hdlfirfilter-system-object.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2019a/ltehdl/examples/lte-hdl-transmitter.html
https://www.mathworks.com/help/releases/R2019a/ltehdl/examples/lte-hdl-sib1-recovery.html
https://www.mathworks.com/help/releases/R2019a/ltehdl/ref/ofdmmodulator.html
https://www.mathworks.com/help/releases/R2019a/ltehdl/ref/ltesymbolmodulator.html
https://www.mathworks.com/help/releases/R2019a/ltehdl/ref/nrsymbolmodulator.html

• LTE Symbol Modulator: BPSK,QPSK,16/64/256-QAM
• NR Symbol Modulator: pi/2-BPSK, BPSK,QPSK,16/64/256-QAM

To use these blocks, you must have LTE HDL Toolbox installed. Each of these three blocks provides an
interface and architecture for HDL code generation and hardware deployment.

Increased kernel size limits for Image Filter block
The Image Filter block now allows for a coefficient kernel with up to 64-by-64 elements. Previously,
the block restricted the coefficient kernel size to 16-by-16 elements. You can use this block if you
have Vision HDL Toolbox installed.

 Block Enhancements

9-7

https://www.mathworks.com/help/releases/R2019a/visionhdl/ref/imagefilter.html

Code Generation and Verification

Customization of constant name in VHDL code generated for Lookup
Table data
Previously, when you generated VHDL code for models that contain lookup tables, the CONSTANT
name for the lookup table data was assigned as nc in the generated code, irrespective of the lookup
table name.

In R2019a, the generated code uses the name of the Lookup table block followed by the postfix
_data for the CONSTANT name in the generated code, based on the name of the Lookup table block
in your Simulink model. This naming customization makes it easier to trace between the model and
the generated code.

For example, consider this model that contains a Lookup Table with the name TBL_SIN.

The generated code for the lookup table data is as shown in table:

Before R2019a In R2019a
-- Constants
 CONSTANT nc : vector_of_signed8(0 TO 3) :=
 (to_signed(16#04#, 8), to_signed(16#10#, 8),
to_signed(16#05#, 8), to_signed(16#13#, 8)); -- sfix8 [4]

-- Constants
 CONSTANT TBL_SIN_table_data : vector_of_signed8(0 TO 3) :=
 (to_signed(16#04#, 8), to_signed(16#10#, 8),
to_signed(16#05#, 8), to_signed(16#13#, 8)); -- sfix8 [4]

Optimized counters in generated HDL code for Stateflow temporal
logic
Temporal logic operators produce integer or fixed-point type counters in the generated HDL code.
Previously, the counter data type in the generated code was returned as uint8, uint16, or uint32,
irrespective of the size of the fixed-point type.

In R2019a, the counters in the generated HDL code are optimized based on the operator and the type
of threshold. For example, consider this Stateflow chart in your Simulink model. The variable x uses
the data type fixdt(0,5,0).

R2019a

9-8

https://www.mathworks.com/help/releases/R2019a/hdlcoder/ref/lookuptable.html

The generated Verilog code for the chart is as shown in the table. The fixed-point type is optimized to
ufix5 instead of returning as uint8.

Before R2019a In R2019a
module Chart (clk, reset, enb,
 x, transitiontakenat);

...

 reg is_Chart; // uint8
 reg [31:0] transitiontakenat_1; // uint32
 reg [7:0] temporalCounter_i1; // uint8
 reg is_Chart_next; // enum type is_Chart (2 enums)
 reg [7:0] temporalCounter_i1_next; // uint8
 reg [7:0] temporalCounter_i1_temp; // uint8
 reg [7:0] t_0; // ufix8

...

module Chart (clk, reset, enb,
 x, transitiontakenat);

...

 reg is_Chart; // uint8
 reg [31:0] transitiontakenat_1; // uint32
 reg [4:0] temporalCounter_i1; // ufix5
 reg is_Chart_next; // enum type is_Chart (2 enums)
 reg [4:0] temporalCounter_i1_next; // ufix5
 reg [4:0] temporalCounter_i1_temp; // ufix5

...

HDL Coder Workflow: Enhanced options for model generation
In R2019a, HDL Coder provides options for model generation in the HDL Code Generation pane for
better usability and performance. In the Model Generation tab, you can select the types of the
models that you want to generate. You can customize the name of the generated model and the
validation model by using Naming options. To control the layout of the generated models, use the
Layout options. For more information, see Model Generation for HDL Code.

HDL Code Generation: Diagnostics tab renamed to Advanced
Before R2019a, Code generation output option was available when you selected HDL Code
Generation in the left pane.

 Code Generation and Verification

9-9

https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/model-generation-for-hdl-code.html

Starting in R2019a, the Code generation output option is available under the Advanced tab when
you select HDL Code Generation > Global Settings in the right pane.

In releases before R2019a, the Global Settings pane had a Diagnostics tab. This tab has now been
replaced by the Advanced tab, which contains the parameters listed under the Diagnostics section.

R2019a

9-10

For more information, see Diagnostics for Optimizations, Diagnostics for Reals and Black Box
Interfaces, and Code Generation Output.

 Code Generation and Verification

9-11

https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/diagnostics-for-optimizations.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/diagnostics-for-reals-and-black-box-interfaces.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/diagnostics-for-reals-and-black-box-interfaces.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/code-generation-output.html

Speed and Area Optimizations

Improvements to element-wise matrix transformation
Previously, when you performed element-wise matrix operations with blocks such as Add or Product,
the code generator expanded the matrix operation to multiple equivalent scalar operations. The
scalar operations extracted each element, performed the computation, and then combined the scalar
elements to output the matrix result. This transformation made the generated model appear complex,
especially for large matrices.

In R2019a, when you perform element-wise matrix operations, the code generator transforms the
element-wise matrix operations in the generated model to column vectors instead of expanding it to
multiple scalar operations. This transformation enables you to more effectively use optimizations such
as streaming when performing matrix operations in your design.

Optimization of unconnected port for removing redundant logic in
design
You can remove redundant logic in your design by deleting the unconnected ports. The optimization
for unconnected ports removes all unconnected input and output ports from the generated code. It
does not remove ports from the top-level DUT models or subsystems.

The optimization includes removing unconnected vector and scalar ports, bus element ports, and bus
ports. Removing unconnected ports improves the readability of the generated VHDL or Verilog code
and reduces code size and area usage.

For more information, see Remove Redundant Logic in Design.

R2019a

9-12

https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/remove-redundant-logic-in-design.html

IP Core Generation and Hardware Deployment

DUT AXI4 slave interface connection to multiple AXI Master interfaces
in reference designs
In R2019a, HDL Coder enables you to connect AXI4 slave interfaces in the DUT HDL IP core to
multiple AXI Master interfaces in the custom reference design.

Previously, when you used the addAXI4SlaveInterface method, you could specify only one AXI
Master interface connection to the DUT AXI4 slave IP core. In R2019a, you can define multiple AXI
Master interfaces which enables you to simultaneously connect your HDL DUT IP core to two or more
AXI Master IP in the reference design, such as the JTAG AXI Master IP and the ARM processor in the
Zynq Processing System.

To learn how you can specify multiple AXI Master interfaces in reference designs, see Define Multiple
AXI Master Interfaces in Reference Designs to access DUT AXI4 Slave Interface.

Default system with External DDR4 Memory Access reference design
You can use a new Default system with External DDR4 Memory Access reference design
when you specify Xilinx Zynq UltraScale+ MPSoC ZCU102 evaluation kit as the target
platform.

You must have HDL Verifier and the HDL Coder Support Package for Xilinx Zynq Platform.

Generation of HDL IP core without AXI4 slave interfaces
In R2019a, when you run the Generic IP Core Generation workflow, you can generate an HDL IP core
without any AXI4 slave interfaces. Use this capability if you do not want to generate an AXI4 slave
interface to tune the IP core parameters.

To run this workflow, open the HDL Workflow Advisor, specify Generic Xilinx Platform or
Generic Altera Platform as the target platform, and make sure that you map the DUT ports to
only External IO, Internal IO, or AXI4-Stream interface with TLAST mapping. In addition, when you
generate the HDL IP core, in the Generate RTL Code and IP Core task, clear the Generate
default AXI4 slave interface check box, and then select Run This Task.For more
information, see Custom IP Core Generation and Generate Board-Independent HDL IP Core from
Simulink Model.

You can also create a custom reference design without an AXI4 slave interface that you can use to
target standalone FPGA boards. In the reference design definition file plugin_rd.m, remove any
mention of the addAXI4SlaveInterface method. For examples, see:

• https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/ip-core-generation-
workflow-without-an-embedded-arm-processor-xilinx-kintex-7-kc705.html

• https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/ip-core-generation-
workflow-without-an-embedded-arm-processor-arrow-deca-max-10-fpga-evaluation-kit.html

 IP Core Generation and Hardware Deployment

9-13

https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/define-multiple-axi-master-interfaces-in-reference-designs-to-access-dut-axi4-slave-interface-1.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/define-multiple-axi-master-interfaces-in-reference-designs-to-access-dut-axi4-slave-interface-1.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/custom-ip-core-generation.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/generate-a-custom-ip-core.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/generate-a-custom-ip-core.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/ip-core-generation-workflow-without-an-embedded-arm-processor-xilinx-kintex-7-kc705.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/ip-core-generation-workflow-without-an-embedded-arm-processor-xilinx-kintex-7-kc705.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/ip-core-generation-workflow-without-an-embedded-arm-processor-arrow-deca-max-10-fpga-evaluation-kit.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/ip-core-generation-workflow-without-an-embedded-arm-processor-arrow-deca-max-10-fpga-evaluation-kit.html

Improved synchronization of global reset signal to IP core clock
domain
In R2019a, when you run the IP Core Generation workflow, the code generator automatically
inserts a piece of logic that synchronizes the global reset signal to the IP core clock domain. The
addition of this synchronization logic prevents metastability in flipflops that can occur when the reset
signal changes within the setup or hold edge of the clock.

The synchronization logic works differently depending on whether you specify the Reset type as
Synchronous or Asynchronous on the model.

• Asynchronous reset: The logic asserts the reset signal asynchronously and de-asserts the reset
signal synchronously.

• Synchronous reset: The logic asserts and de-asserts the reset signal synchronously.

For more information, see Synchronization of Global Reset Signal to IP Core Clock Domain.

Minimization of clock enable signals in IP Core Generation workflow
When you run the IP Core Generation workflow, in the Set Advanced Options task of the HDL
Workflow Advisor, on the Ports tab, if you select the Minimize clock enables check box, you can
now minimize or remove clock enable signals in the generated HDL IP core.

To use this capability, you must:

• Specify Free running as the Processor/FPGA synchronization mode.
• Assign one of the DUT ports to the Ready port when mapping to AXI4-Stream Master or AXI4-

Stream Video Master interfaces.

Updates to supported software
HDL Coder has been tested with Xilinx Vivado Design Suite 2018.2.

See Supported Third-Party Tools and Hardware.

R2019a

9-14

https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/synchronization-of-global-reset-signal-to-ip-core-clock-domain.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/minimize-clock-enables-and-reset-signals.html#bvnyzkk-1
https://www.mathworks.com/help/releases/R2019a/hdlcoder/gs/language-and-tool-version-support.html

Simscape Hardware-in-the-Loop Workflow

Double-precision floating-point support for HDL code generation from
Simscape models
You can now generate an HDL implementation model with double data types when you run the
Simscape HDL Workflow Advisor for your original Simscape model. To generate the implementation
model with double data types, in the Generate implementation model task, specify double as the
Floating-point precision.

Previously, you could generate an implementation model with single data types. In R2019a, single is
the default data type. It is recommended that you use single data types, and then simulate the
generated implementation model to see if your design meets the numerical accuracy requirements. If
your design does not meet the requirements, use double as the Floating-point precision.

See also Simscape HDL Workflow Advisor Tasks and Validate HDL Implementation Model to Simscape
Algorithm.

Validation logic verification for functional equivalence of HDL
implementation model with Simscape model
In R2019a, you can specify insertion of a validation logic subsystem in the HDL implementation
model when you run the Simscape HDL Workflow Advisor. By using the validation logic, you can
verify the functional equivalence of the generated HDL implementation model with the original
Simscape algorithm.

To insert this logic, in the Generate implementation model task, select the Generate validation
logic for the implementation model check box. When you run this task and open the HDL
implementation model, you see a Validation Subsystem block that compares the output of the
Simscape algorithm with the HDL implementation.

If the HDL implementation model does not meet the numerical accuracy requirements of your design,
you can increase the Validation logic tolerance or change the Floating-point precision to
double. To learn more, see Validate HDL Implementation Model to Simscape Algorithm.

Simscape to HDL Workflow Reference Applications
Simscape to HDL workflow provides two examples:

• Replacing variable resistors illustrates how a nonlinear model that consists of variable resistors
can be replaced by using an equivalent switched linear model for compatibility with Simscape to
HDL workflow and generation of HDL implementation model.

• Simscape Hardware-in-the-Loop (HIL) on Speedgoat FPGA I/O Modules illustrates how you can
target your Simscape algorithm onto Speedgoat FPGA I/O modules and perform Hardware-in-the-
Loop (HIL) simulation.

 Simscape Hardware-in-the-Loop Workflow

9-15

https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/simscape-hdl-workflow-advisor-tasks.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/validate-hdl-implementation-model-and-resolve-numerical-mismatches.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/validate-hdl-implementation-model-and-resolve-numerical-mismatches.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/ug/validate-hdl-implementation-model-and-resolve-numerical-mismatches.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/replacing-variable-resistors.html
https://www.mathworks.com/help/releases/R2019a/hdlcoder/examples/simscape-hil-speedgoat-fpga-io-modules.html

R2018b

Version: 3.13

New Features

Bug Fixes

Compatibility Considerations

10

Model and Architecture Design

Verilog Import: Import synthesizable Verilog code and generate
Simulink model
In R2018b, by using the importhdl function, you can import your HDL file that contains
synthesizable Verilog code and generate the corresponding Simulink model. The generated Simulink
model is an exact representation of the HDL code in terms of functionality and behavior. The
imported model uses basic Simulink blocks instead of a black box representation.

By importing the code in Simulink, you can

• Verify the simulation behavior of the handwritten Verilog code in a model-based simulation
environment.

• Optimize your design in Simulink and further improve area and timing on the target FPGA device
by using the speed and area optimizations in HDL Coder.

To learn more, see Verilog HDL Import: Import Verilog Code and Generate Simulink Model.

Double-Precision Native Floating Point: Generate target-independent
synthesizable RTL from double-precision floating-point models
In R2018b, if you have double-precision data types in your Simulink model, you can use HDL Coder
native floating-point support to generate target-independent HDL code without converting to fixed
point or single-precision data types. You can deploy the generated code on any generic ASIC or FPGA
platform.

To see the blocks that HDL Coder supports with double-precision data types, see Simulink Blocks
Supported with Native Floating-Point.

Custom latency specification for native floating-point operators
In R2018b, if you use floating-point data types as input to certain blocks in your model, you can
specify a custom latency by using the HDL Coder native floating-point support. By using custom
latency, you can use more latency choices other than from Zero, Min, and Max, which gives you
better speed control. To learn about the blocks that support the custom latency setting and how to
specify a custom latency, see NFPCustomLatency.

By specifying a custom latency, you can customize your design to achieve a balance between:

• Clock frequency and power consumption: A higher latency value increases the maximum clock
frequency (Fmax), which increases the dynamic power consumption.

• Oversampling factor and sampling frequency: A combination of higher latency value and higher
oversampling factor increases the Fmax but reduces the sampling frequency.

See also Latency of Floating Point Operators.

R2018b

10-2

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/importhdl.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-import-import-hdl-code-and-generate-simulink-model.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-block-properties-native-floating-point.html#mw_e29db696-7117-431a-a8b8-4471b8d24ea8
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/minimum-and-maximum-latency-of-floating-point-operators.html

Enhancements to supported blocks and complex data types with
single-precision native floating-point
Block Support

HDL Coder now supports the Sqrt block with Function set to signedSqrt in the native floating-
point mode.

Complex Data Type Support

HDL Coder now supports complex types with these blocks in the native floating-point mode.

• Unary Minus
• Sign
• Math Function with Function set to conj, transpose, or hermitian
• Data Type Conversion
• Rounding Function with Function set to floor, ceil, round, or fix

See also Simulink Blocks Supported with Native Floating-Point.

Enhancements to output delay absorption for complex multipliers with
single-precision native floating-point
In R2018b, if your design uses single data types and contains complex Gain blocks that take a
complex input or have a complex Gain parameter, or your design contains complex Product blocks,
HDL Coder absorbs the delays at the output of the blocks. To use this delay absorption, before you
generate HDL code, enable the Native Floating Point mode.

Previously, for the Gain block, HDL Coder absorbed delays when both input and the Gain parameter
were scalars. Now, for the Gain block, HDL Coder absorbs delays in any of these cases:

• Scalar input with scalar Gain parameter
• Complex input with scalar Gain parameter
• Scalar input with complex Gain parameter
• Complex input with complex Gain parameter

For example, this figure shows a model that uses single data types and inputs a complex value to a
Gain block that has a scalar Gain parameter and an output delay of three.

 Model and Architecture Design

10-3

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/sqrt.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/unaryminus.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/sign.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/mathfunction.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/datatypeconversion.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/roundingfunction.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html

This table displays the generated model when you generate code for the HDL_DUT Subsystem. In
R2018b, you see that HDL Coder absorbs the delays as part of the floating-point product operators,
NFP_mul. To learn more, see Latency Considerations with Native Floating Point.

Before R2018b In R2018b

R2018b

10-4

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/latency-considerations-with-native-floating-point.html

Block Enhancements

Enhancements to matrix support for HDL code generation
In R2018b, HDL Coder extends the block support to more blocks that can perform element-wise
operations. Other blocks that are supported with matrix types include:

• Assignment
• From
• Goto
• MATLAB Function

To learn about blocks that are supported with matrix types, see Signal and Data Type Support.

HDL code generation support for Probe block and blocks that detect
change in input signal value
In R2018b, HDL Coder supports code generation for these blocks:

• Probe – probes selected attributes of the input signal such as width, dimensionality, sample time
and offset, and whether the signal is complex-valued.

• Detect Change – detects whether there is a change in value of an input signal from the previous
value.

• Detect Decrease – detects whether there is a decrease in value of an input signal from the
previous value.

• Detect Increase – detects whether there is an increase in value of an input signal from the
previous value.

HDL code generation support for Foreach Subsystem with Minimize
global resets setting
In R2018b, HDL Coder supports code generation for a design that uses a For Each Subsystem and
has the Minimize global resets setting enabled. To learn more about this setting, see Minimize
Clock Enables and Reset Signals.

HDL Coder support for virtual bus containing nonvirtual subbus
In your design, you can now model virtual buses containing nonvirtual buses or an array of buses,
and then generate HDL code for the design.

 Block Enhancements

10-5

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/assignment.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/from.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/goto.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/matlabfunction.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/signal-and-data-type-support.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/probe.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/detectchange.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/detectdecrease.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/detectincrease.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/minimize-clock-enables-and-reset-signals.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/minimize-clock-enables-and-reset-signals.html

Viterbi Decoder and Depuncturer Block: Decode bitstreams by using
the Viterbi algorithm with puncturing, terminated, and truncated
modes (requires LTE HDL Toolbox)
The Viterbi Decoder block supports continuous, terminated, and truncated modes by using hardware-
friendly control signals. The block supports punctured code rates and provides an erasure port. The
Depuncturer block accepts a puncture vector as either a port or a property and provides an erasure
output signal.

Both blocks support HDL code generation.

HDL code generation support for complex input signals or complex
coefficients of frame-based Discrete FIR Filter and FIR Decimation
blocks (requires DSP System Toolbox)
You can generate HDL code from a frame-based filter that uses either complex input signals and real
coefficients or complex coefficients and real input signals. See the "Frame-Based Input Support"
sections of Discrete FIR Filter and FIR Decimation.

Discrete FIR Filter HDL Optimized: Select transposed architecture,
optimize symmetric and antisymmetric coefficients, and enable reset
port (requires DSP System Toolbox)
The Discrete FIR Filter HDL Optimized block now provides:

• An option to use a direct form transposed architecture.

R2018b

10-6

https://www.mathworks.com/help/releases/R2018b/ltehdl/ref/viterbidecoder.html
https://www.mathworks.com/help/releases/R2018b/ltehdl/ref/depuncturer.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/discretefirfilterhdloptimized.html

• Optimization of symmetric and antisymmetric coefficients when you select Direct form systolic
(without Share DSP resources enabled) or select Direct form transposed. This optimization
reduces the number of multipliers and makes efficient use of FPGA DSP resources.

• Optional Reset input port.

These features are also available on the dsp.HDLFIRFilter System object.

Compatibility Considerations
Starting in R2018b:

• The validIn port is mandatory. The Enable valid input port parameter is no longer available.
• The ready port is always enabled when you select Share DSP resources and disabled when you

clear Share DSP resources. The Enable ready output port parameter is no longer available.

 Block Enhancements

10-7

https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.hdlfirfilter-system-object.html

Code Generation and Verification

Test Point Integration with FPGA Data Capture: Use FPGA data
capture to specify signals to be captured during FPGA testing by
using Test Points in Simulink
You can now use FPGA Data Capture in an HDL Coder workflow. Configure the HDL Workflow
Advisor to enable DUT output port generation for test point signals, and then analyze them in
MATLAB or Simulink (Requires an HDL Verifier license).

For more information, see FPGA Data Capture.

User-Interface Improvements to HDL Workflow Advisor and HDL Code
Generation Pane in Configuration Parameters Dialog Box
HDL Code Generation Pane in Configuration Parameters Dialog Box

The HDL Code Generation pane is now reorganized and has new subpanes. The new panes includes
subpanes for specifying target device settings, speed and area optimizations, reporting parameters,
and so on. Before generating code, you can use this organization to more easily navigate to the
parameters of interest and apply them to your model.

This figure shows the new panes added to the HDL Code Generation pane.

This table lists the changes to the HDL Code Generation pane.

R2018b

10-8

https://www.mathworks.com/help/releases/R2018b/hdlcoder/fpga-data-capture.html

HDL code generation
parameters in Configuration
Parameters Dialog Box

Before R2018b In R2018b

Target frequency and synthesis
tool and device parameters

Tool and Device section of the
HDL Code Generation >
Target and Optimization
pane.

The parameters moved to a new
HDL Code Generation >
Target pane.

Multicycle path constraints and
optimization parameters

Optimization and Multicycle
Path Constraints sections of
the HDL Code Generation >
Target and Optimization
pane.

The parameters moved to a new
HDL Code Generation >
Optimization pane.

Native floating-point and target
floating-point mapping
parameters

Floating Point Target tab of
the HDL Code Generation >
Global Settings pane.

The parameters moved to a new
HDL Code Generation >
Floating Point.

Code Generation Report
parameters

Code Generation Report
section of the HDL Code
Generation pane.

The parameters moved to a new
HDL Code Generation >
Report pane.

HDL Workflow Advisor

The HDL Workflow Advisor has a new Set Report Options task. The new task appears after the Set
Basic Options task. Use this task to specify the Code Generation Report parameters that were
previously in the Set Basic Options task.

 Code Generation and Verification

10-9

R2018b

10-10

Speed and Area Optimizations

Enhancements to optimization that removes redundant logic in design
In R2018b, HDL Coder made enhancements to the optimization that removes redundant logic in
design, which further reduces code size and area usage.

For example, if you have an Enabled Subsystem that does not contain useful logic, the optimization
removes the Subsystem after HDL code generation. This optimization does not generate HDL code
for the Enabled Subsystem, which reduces the code size and avoids potential synthesis failures with
downstream tools when you deploy the generate code onto a target platform. This optimization works
with both fixed-point and floating-point data types.

To learn about these enhancements, see the Removing Subsystems section in Dead Code
Elimination.

Streaming operation modes of Multiply-Accumulate block
You can now use a streaming mode of operation for the Multiply-Accumulate block. Previously, the
code generator supported the vector mode of operation. In R2018b, the code generator supports this
mode as the default and provides two streaming modes. To specify when to start and stop the
accumulation, and when the block output is valid, use the streaming mode control signals.

To use the streaming modes, in the Block Parameters dialog box of the Multiply-Accumulate block, for
Operation Mode, specify either Streaming - using Start and End ports or Streaming -
using Number of Samples.

To learn more, see Multiply-Accumulate.

Different output latencies for designs with clock-rate pipelining
enabled at output ports
Previously, when you enabled the Allow clock-rate pipelining of DUT output ports setting, the
code generator used the same latency for sampling the DUT output ports. When you used this
optimization, and if you inserted clock-rate pipelines greater than the Oversampling factor to any of
the output ports, you incurred a simulation mismatch in the validation model.

For example, consider this design that has an Oversampling factor of 10 and contains two different
subsystems with the ClockRatePipelining property set to off.

 Speed and Area Optimizations

10-11

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/_mw_1b33de2d-e14b-4f78-83b4-24bd8d2a892d.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/_mw_1b33de2d-e14b-4f78-83b4-24bd8d2a892d.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/multiplyaccumulate.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/multiplyaccumulate.html

Subsystem1 contains a Subsystem that has a Gain block with the OutputPipeline property set to 1
and ClockRatePipelining set to on. Subsystem2 contains a Subsystem block that has a Gain block
with the OutputPipeline property set to 12 and ClockRatePipelining set to on.

Previously, if you generated HDL code and the validation model for this design, and then simulated
the validation model, you observed a simulation mismatch. This mismatch occurred because delay
balancing adds a matching delay, which results in the Gain block with OutputPipeline set to 12
using one additional latency.

In R2018b, if you enable the Allow clock-rate pipelining of DUT output ports setting, the clock-
rate pipelining optimization uses different latencies for sampling the DUT output ports. If you now
generate HDL code and the validation model for the design containing the Gain block, delay

R2018b

10-12

balancing does not insert additional matching delays, which reduces the latency and avoids the
simulation mismatch in the validation model.

 Speed and Area Optimizations

10-13

IP Core Generation and Hardware Deployment

Xilinx Zynq UltraScale+ MPSoC Targeting: Select from predefined
targets and reference designs to generate code for MPSoC devices
In R2018b, you can target Xilinx Zynq UltraScale+ MPSoC devices, and use the IP Core
Generation workflow to:

1 Generate an HDL IP core for the MPSoC device.
2 Generate the software interface model for the HDL IP core.
3 Integrate the HDL IP core into the HDL Coder reference designs or create your own custom

reference design and target the Xilinx Zynq UltraScale+ MPSoC device.

For an example, see Getting Started with Hardware-Software Co-Design Workflow for Xilinx Zynq
UltraScale+ MPSoC Platform.

Multirate IP Core Generation: Target AXI4-Stream and AXI4 Master
interfaces for designs with multiple sample rates
In R2018b, HDL Coder supports the IP Core Generation workflow for designs that have multiple
sample rates when you use any of these AXI4 interfaces:

• AXI4-Stream
• AXI4-Stream Video
• AXI4 Master

To use this workflow, ensure that the DUT ports that map to these AXI4 interfaces run at the fastest
rate of the design after HDL code generation. For examples of this workflow, see Multirate IP Core
Generation.

PCIe MATLAB as AXI Master with External DDR4 Memory Access
reference design for Intel Arria10 GX FPGA Development kit
You can now specify Intel Arria10 GX FPGA Development kit as the target platform and
target a new PCIe MATLAB as AXI Master with External DDR4 Memory Access reference
design by using the IP Core Generation workflow. To use this reference design, you must have
HDL Verifier installed.

The reference design consists of a PCIe MATLAB AXI Master IP that you can use to access the slave
memory locations on board the FPGA from MATLAB. The PCIe MATLAB AXI Master IP connects to an
Intel PCIe IP core. Using a PCIe bus, you can send read and write commands from the MATLAB
command line to the Intel PCIe IP core, which then communicates to the PCIe MATLAB AXI Master IP.
Therefore, you can use the PCIe MATLAB AXI Master IP in the reference design to transfer a large
amount of data between MATLAB and the FPGA through a high-speed PCI express interface.

When you target this reference design, the HDL DUT IP core can access the external DDR4 memory
by using the AXI4 Master interface. When you run the IP Core Generation workflow, you can map
the DUT ports to AXI4 Master interfaces. To learn more, see Performing Large Matrix Operation on
FPGA using External Memory.

R2018b

10-14

https://www.mathworks.com/help/releases/R2018b/hdlcoder/examples/getting-started-with-hardware-software-codesign-workflow-for-zynq-ultrascale-mpsoc-devices.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/examples/getting-started-with-hardware-software-codesign-workflow-for-zynq-ultrascale-mpsoc-devices.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/multirate-ip-core-generation.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/multirate-ip-core-generation.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/examples/performing-large-matrix-operation-on-fpga-using-external-memory.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/examples/performing-large-matrix-operation-on-fpga-using-external-memory.html

Timing failure check in Build FPGA Bistream step of IP Core
Generation workflow
In R2018b, from your Simulink model, when you run the IP Core Generation workflow, or the
Simulink Real-Time FPGA I/O workflow for boards that are based on Xilinx Vivado, if the Vivado
or Quartus tool is unable to meet the design timing, HDL Coder reports a timing failure in the Build
FPGA Bitstream task. Previously, when you ran the Build FPGA Bitstream task, the task ignored
any timing failures and displayed the results as Passed. To identify that there was a timing failure,
you had to open the project in Vivado or Quartus and navigate to the Project Summary information.

In the event of a timing failure, the Build FPGA Bitstream task:

• Reports a message Timing constraints NOT met!.
• Reports the worst negative slack.
• Replaces the previous bitstream with a new bitstream that has the same name and uses a postfix

_timingfailure.bit or _timingfailure.sof depending on whether you created a project by
using Vivado or Quartus.

• Provides a link to the timing_report.
• Provides a link to an Article_on_timing_failures.

Support for read back of AXI4 write registers in IP Core Generation
workflow
In R2018b, from your Simulink model, when you run the IP Core Generation workflow, or the
Simulink Real-Time FPGA I/O workflow for boards that are based on Xilinx Vivado, you can read
back the value that is written to the AXI4 slave write registers. HDL Coder supports the read back
capability for values of scalar and vector data types that are written to the write registers by using
AXI4 or AXI4-Lite interfaces.

 IP Core Generation and Hardware Deployment

10-15

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/resolve-timing-failures-in-ip-core-generation-and-generic-asicfpga-workflows.html

To use this capability, in the Generate RTL Code and IP Core task, select the Enable readback on
AXI4 slave write registers check box, and then run this task. This setting is saved on the DUT
Subsystem for which you are generating the HDL IP core. To access this setting, in the HDL Block
Properties > Target Specification tab, select AXI4RegisterReadback.

After you run the IP Core Generation workflow and program and connect to the target device,
you can read back the value that is written to the registers by using the AXI4 Slave registers in the
Linux console of the ARM processor. If you have HDL Verifier installed, you can use the MATLAB as
AXI Master IP to read back the values.

For more information, see Model Design for AXI4 Slave Interface Generation.

Microsemi Libero SoC Targeting: Synthesize and implement generated
code on Microsemi FPGAs by using HDL Workflow Advisor
If you specify Microsemi Libero SoC as the Synthesis tool and Generic ASIC/FPGA as the target
workflow, you can now synthesize and implement the generated HDL code on Microsemi FPGA
devices.

In R2018b, HDL Coder supports these family of devices:

• RTG4
• SmartFusion2
• IGLOO2

R2018b

10-16

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ug/model-design-for-axi4-slave-interface-generation.html

Before you specify Microsemi Libero SoC as the Synthesis tool, set up the tool path by using the
hdlsetuptoolpath function. Make sure that you have already installed Microsemi Libero SoC.

hdlsetuptoolpath('ToolName','Microsemi Libero SoC','ToolPath',...
 'C:\Microsemi\Libero_SoC_v11.8\Designer\bin');

See also Tool Setup and Supported Third-Party Tools and Hardware.

Speedgoat IO Modules IO321 and IO321-5 being replaced
HDL Coder no longer supports the Speedgoat IO modules Speedgoat IO321 and its variant
Speedgoat IO321-5 that use the Xilinx Virtex-4 FPGA with the Simulink Real-Time FPGA I/O
workflow.

Compatibility Considerations
If you load a pre-R2018b model that was saved with the target platform Speedgoat IO321 or
Speedgoat IO321-5, and then open the HDL Workflow Advisor, HDL Coder generates a warning. To
avoid this warning, when you run the Simulink Real-Time FPGA I/O workflow, use the
Speedgoat IO331 or a later Speedgoat board.

See also Supported Third-Party Tools and Hardware and Xilinx HDL Support with Speedgoat IO
Modules.

Updates to supported software
HDL Coder has been tested with:

• Xilinx Vivado Design Suite 2017.4
• Intel Quartus Prime Standard Edition 17.1
• Microsemi Libero SoC 11.8

See Supported Third-Party Tools and Hardware.

 IP Core Generation and Hardware Deployment

10-17

https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/hdlsetuptoolpath.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/gs/toolbox-setup.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/gs/language-and-tool-version-support.html
https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software
https://www.speedgoat.com/help/page/configuration/refentry_host_software_installation#refsect1_xilinx_hdl_software
https://www.mathworks.com/help/releases/R2018b/hdlcoder/gs/language-and-tool-version-support.html

Simscape Hardware-in-the-Loop Workflow

Hardware Acceleration of Plant Models: Generate HDL code from
Simscape Electrical switched linear models
In R2018b, you can generate HDL code for your plant model that you developed by using Simscape
blocks, and then deploy the generated code to a target FPGA device. Previously, before you could
generate HDL code, you had to convert the Simscape model to an equivalent Simulink model.

By deploying the plant model to an FPGA, you can:

• Simulate the HDL implementation in real time with smaller time steps and increased accuracy by
using hardware-in-the-loop (HIL) simulations.

• Model complex physical systems that previously took a long time to model by using Simulink
blocks.

• Use the reconfigurability and parallelism capabilities of the FPGA for improved area and timing.

For more information, see Simscape .

R2018b

10-18

https://www.mathworks.com/help/releases/R2018b/hdlcoder/simscape.html

R2018a

Version: 3.12

New Features

Compatibility Considerations

11

Model and Architecture Design

HDL Model Checker integrated with Model Advisor
HDL Coder has now integrated the checks in the HDL Model Checker into the Simulink Model
Advisor. When you open the Model Advisor in Simulink, you see the checks in the HDL Coder
subfolder of the By Product folder.

For more information, see Run Model Advisor Checks for HDL Coder.

Updates to model checks in HDL Coder
Checks Added

For native floating-point support, the code generator has added these checks.

• Check for HDL Reciprocal block usage: Checks whether your model contains HDL Reciprocal
blocks that use floating-point types. This check then recommends replacing these blocks with
Math Reciprocal blocks to save area and improve accuracy of your design.

• Check for Relational Operator block usage: Checks whether Relational Operator blocks that
use floating-point types have Boolean outputs.

• Check for large matrix operations: Checks whether your model contains matrix inputs with
more than two dimensions or contains large matrix operations that result in a matrix output with
more than ten elements.

R2018a

11-2

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/_mw_d7728682-fd62-4fde-b4b3-6aae3c28c174.html

Checks Updated

The code generator has updated these checks:

• The Check for infinite sample time sources has been updated to the Check for infinite and
continuous sample time sources.

• The Check for Data Type Conversion blocks with incompatible settings has been updated to
check whether the blocks use the Stored Integer (SI) conversion mode while converting
between floating-point and fixed-point data types. Previously, this check detected whether the
blocks used the Stored Integer (SI) conversion mode and whether the Integer rounding
mode was set to Nearest.

For more information, see Model Checks in HDL Coder.

Enhanced Radix-4 algorithm for Divide and Reciprocal blocks in Native
Floating Point mode
The code generator now supports a Radix-4 mode for Divide and Reciprocal blocks with single
data types in the Native Floating Point mode.

The previous Radix-2 mode, which is currently the default, offers a trade-off between latency and
frequency. In R2018a, by using the Radix-4 mode, you can trade-off your design between latency
and resource usage.

To learn more, see DivisionAlgorithm.

Improved shift-and-add algorithm for exponential and hyperbolic
functions in Native Floating Point mode
The code generator now uses an improved shift-and-add algorithm for the exponential and hyperbolic
functions in Native Floating Point mode. This algorithm has a smaller ULP error of 1, uses less
resources on the target device, and achieves a higher clock frequency maximum with less latency.

The improved shift-and-add algorithm supplements the previous shift-and-add algorithm with the
Taylor polynomial approximation when the absolute error is small. This algorithm reduces the
number of iterations of shift-and-add operations that are required to achieve the desired accuracy.

To see the latency and ULP of floating-point operators:

• ULP of Native Floating-Point Operators
• Minimum and Maximum Latency of Floating Point Operators

HDL code generation support for all rounding modes of Data Type
Conversion block in Native Floating Point mode
The code generator now supports all Integer rounding mode options for the Data Type Conversion
block with single data types in Native Floating Point mode. Using the various supported
rounding modes, you can easily convert between single and fixed-point data types in your design
and use the same block settings for the blocks in floating-point and fixed-point domains.

 Model and Architecture Design

11-3

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/overview-of-checks-in-the-hdl-model-checker.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/divide.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/mathfunction.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/hdl-block-properties-native-floating-point.html#mw_c7ca146c-47f4-4581-9967-9293f41f07cd
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/numerical-considerations-with-native-floating-point.html#mw_693720de-d034-4692-9a92-87109e891def
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/minimum-and-maximum-latency-of-floating-point-operators.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/datatypeconversion.html

Previously, the code generator supported the Nearest rounding mode for floating-point operations. If
you used other rounding modes, you ran the Check for Data Type Conversion blocks with
incompatible settings in the HDL Model Checker to convert the rounding mode to Nearest.

Floating-point control for Multiport Switch and Selector blocks
The code generator now supports single-precision floating-point data types as control input to the
Multiport Switch and Selector blocks in the Native Floating Point mode.

R2018a

11-4

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/multiportswitch.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/selector.html

Block Enhancements
Matrix Support: Generate HDL code directly from two-dimensional
matrix data types and operations
In R2018a, you can use two-dimensional matrix data types and operations in your Simulink model
for HDL code generation. With HDL Coder support, you can:

Model complicated math operations by using Matrix types easily.

• Use matrix types with all supported data types that include fixed-point, single-precision native
floating-point, complex, and bus types.

• Use matrix types with all optimizations, particularly resource sharing.
• Generate HDL code, verify the generated code, and deploy the code onto a target platform when

you use matrix data types for a subset of Simulink blocks in your model.

To learn about the block subset and how to use matrix types, see Signal and Data Type Support. See
also Matrix Multiply.

Additional blocks and block modes supported for HDL code generation
HDL Coder now supports these blocks and block modes:

• PartMultiplierPartAddShift mode of mantissa multiplication for the sin and cos Function
modes of the Trigonometric Function block. You can specify this mode by using the Mantissa
multiply strategy setting in the Configuration Parameters dialog box or in the Native Floating
Point tab of the HDL Block Properties for the sin and cos functions.

• Denormal handling support for the Gain block by power of two.
• External reset port with mode set to none, rising, or falling for the Discrete-Time Integrator

block with fixed-point and single data types.

Bit-Natural FFT Output: Directly access the bit-natural output from
the frame-based FFT/IFFT (Requires DSP System Toolbox)
You can now select bit-natural output order, with any input order, when using the frame-based mode
of the HDL-optimized FFT and IFFT. Before R2018a, input and output data had to be in opposite
order. The order of the input and output data are no longer restricted for these blocks and System
objects:

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

Compatibility Considerations
Before R2018a, the output order of the Channelizer HDL Optimized block was bit-reversed when you
set Output vector size to Same as input size. The output order is now bit-natural for both
output sizes. This change also affects the dsp.HDLChannelizer System object.

 Block Enhancements

11-5

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/signal-and-data-type-support.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/matrixmultiply.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/discretetimeintegrator.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlfft-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlifft-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/channelizerhdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlchannelizer-system-object.html

LTE OFDM demodulation and Gold sequence generation blocks
(Requires LTE HDL Toolbox)
LTE HDL Toolbox introduces two new HDL-supported blocks for LTE system design:

• Gold Sequence Generator — Generate LTE-standard Gold sequences for channel estimation and
descrambling.

• OFDM Demodulator — Demodulate orthogonal frequency-division multiplexing symbols according
to the LTE standard.

Additional pipelining of HDL-optimized Complex to Magnitude-Angle
(Requires DSP System Toolbox)
To improve synthesized clock frequency and make better use of DSP blocks on FPGAs, the Complex to
Magnitude-Angle HDL Optimized block has additional pipelining. This change also affects the
dsp.HDLComplexToMagnitudeAngle System object.

Compatibility Considerations
The latency of the block and System object is three cycles longer than in previous releases. You must
adjust the delay balancing of parallel data paths. The latency is displayed on the block.

5G filtered-OFDM modulation reference application (Requires LTE HDL
Toolbox)
This example implements an F-OFDM transmitter suitable for 5G transmitter designs and verifies the
design by using the 5G Library for LTE System Toolbox®. The example supports HDL code
generation. It shows how to convert from double to fixed-point types and how to minimize the
resource use of the design on an FPGA.

R2018a

11-6

https://www.mathworks.com/help/releases/R2018a/ltehdl/ref/goldsequencegenerator.html
https://www.mathworks.com/help/releases/R2018a/ltehdl/ref/ofdmdemodulator.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlcomplextomagnitudeangle-system-object.html

Code Generation and Verification

Line-Level Traceability: Navigate directly between Simulink blocks and
corresponding lines of generated HDL code
In R2018a, when you generate the traceability report with the HDL code, the code generator
provides line-level control of model-to-code and code-to-model traceability.

Previously, code-to-model and model-to-code navigation depended on block comments in the
generated HDL code. In R2018a, HDL Coder does not generate block comments and provides more
precise code-to-model and model-to-code traceability to lines of HDL code instead of comments.
Using the report, you can now easily navigate between the blocks in your Simulink model and the
generated HDL code.

For more information, see Navigate Between Simulink Model and HDL Code by Using Traceability.

Microsemi FPGA Support: Specify Microsemi Libero SoC as Synthesis
Tool and generate HDL code
The code generator now supports Microsemi Libero SoC as a Synthesis Tool that you can specify
in the HDL Code Generation > Target and Optimizations pane of the Configuration Parameters
dialog box. When you use the Native Floating Point support in HDL Coder and generate code,
the default Auto mode for the Mantissa Multiply Strategy setting maps your design efficiently to
the multiply-accumulate (MAC) units on the Microsemi Libero FPGAs.

To specify Microsemi Libero SoC as a Synthesis Tool in the HDL Workflow Advisor, set up the
path to your Synthesis Tool by using the hdlsetuptoolpath function. After you specify the tool,
you can:

• Generate HDL code and verify with HDL cosimulation when you run the Generic ASIC/FPGA
workflow.

• Run the FPGA-in-the-Loop workflow for your target device.

Concise summary of synthesis results displayed in HDL Workflow
Advisor
The HDL Workflow Advisor now displays more concise information about the area usage and timing
of your design. For additional information, the Advisor provides easily navigable links to the relevant
synthesis files.

To obtain the concise report, in the Set Target Device and Synthesis Tool task, Synthesis Tool
must be Xilinx Vivado or Altera Quartus II, and Target workflow must be Generic ASIC/
FPGA.

For example, this figure shows the resource report when you run the Perform Mapping task in the
HDL Workflow Advisor.

 Code Generation and Verification

11-7

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/traceability-report.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ref/hdlsetuptoolpath.html

New Code Generation Report: View more information and navigate
through code generation results more easily
In R2018a, the code generation report has a new user interface, more information, and improved
navigation.

R2018a

11-8

You can now:

• View the HDL code with syntax highlighting.
• Find more information on the Summary tab, including code generation settings, entry points, and

links to the Conformance Report, Resource Report, and Compliance Report.
• Navigate from the MATLAB code to context-sensitive information. For example, if you double-click

a variable in the MATLAB code, you see the variable in the Variables tab.

In R2018a, the report is located in the same folder as in previous releases, but has a different file
format. In previous releases, the report was saved with an HTML format and consisted of many files.
In R2018a, the report is saved as one file with an .mldatx file extension.

For more information, see Code Generation Reports.

 Code Generation and Verification

11-9

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/code-generation-reports.html

Compatibility Considerations
If you generate a report in R2018a, you cannot open it in a previous release. In R2018a, you can open
reports that you generated in a previous release, but they look and behave as they did in that
previous release.

R2018a

11-10

Speed and Area Optimizations

Critical Path Estimation with Native Floating Point: Report critical
path for designs with single-precision floating-point operations
You can now estimate the critical path of your single-precision floating-point designs in Simulink
without running synthesis. Use critical path estimation to improve timing by quickly iterating through
finding and pipelining the critical path in your design.

For more information, see Critical Path Estimation Without Running Synthesis.

Simplification of constant operations and other optimizations for
fixed-point and floating-point arithmetic operations
The code generator now evaluates components whose inputs are constants and substitutes the
components with other simplified components by propagating the constant value. This optimization
avoids redundant computations during simulation and improves area and timing on the target device.

By creating modeling patterns that use a combination of these optimizations, you can significantly
improve the performance of your design on the target hardware.

For more information, see Constant Folding and Peephole Optimizations in HDL Coder.

Improvement to reduction of matching delays in clock-rate pipelining
regions across hierarchical boundaries
Clock-rate pipelining can introduce a latency in parts of your design that are combinational. The
algorithm that the code generator uses attempts to minimize the delays within a clock-rate pipelining
region. In R2018a, the code generator can reduce the delays further within a clock-rate pipelining
region while preserving the hierarchy of the subsystems in your model.

For example, consider this Simulink model that has back-to-back subsystems inside a feedback loop.
Each Subsystem contains a Gain block and an Add block. When you specify an Oversampling factor
and generate code without flattening the subsystem hierarchy, HDL Coder introduces matching
delays to balance the clock-rate pipelines. In R2017b, the code generator reduces the matching
delays in the clock-rate pipelining region at the output Subsystem. In R2018a, the code generator can
further reduce the latency by traversing the path to identify matching delays in other Subsystem
blocks that can be reduced.

 Speed and Area Optimizations

11-11

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/find-estimated-critical-paths-without-synthesis-tools.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/_mw_2227193a-ce24-4917-a58a-c59abded0ec7.html

See also Clock-Rate Pipelining.

MaxOversampling and MaxComputationLatency parameters being
removed
The MaxOversampling and MaxComputationLatency parameters are being removed. Replace
these parameters with Oversampling factor and use Oversampling factor in conjunction with
clock-rate pipelining.

Compatibility Considerations
In R2018a, if you load a pre-R2018a model that has the MaxOversampling or
MaxComputationLatency parameters saved on the model and then generate code, HDL Coder
generates a warning and ignores the parameter values during code generation. To avoid this warning,
use hdlset_param to set MaxOversampling and MaxComputationLatency to their default values
of Inf and 1 respectively. Specify the Oversampling factor, enable Clock-rate pipelining, and
then generate HDL code.

See also Optimization with Constrained Overclocking.

R2018a

11-12

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/clock-rate-pipelining.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/optimization-without-overclocking.html

IP Core Generation and Hardware Deployment

AXI4-Stream for Intel FPGA: Generate IP cores with the AXI4-Stream
interface targeting Intel FPGAs
You can now use the IP Core Generation workflow to generate an HDL IP core with AXI4-Stream
interface for targeting Intel FPGAs. Using the AXI4-Stream interface, you can:

• Connect to other IP cores that have AXI4-Stream interface.
• Target high-speed signal processing and video processing applications on Intel FPGAs.

To learn how to model your design, see Model Design for AXI4-Stream Interface Generation.

To generate an IP core with AXI4-Stream interface for Intel devices using the HDL Workflow Advisor:

1 In the Set Target Device and Synthesis Tool task, specify IP Core Generation as the
Target workflow and Generic Altera Platform as the Target platform.

2 In the Set Target Interface task, you can assign ports to AXI4-Stream master and slave
interfaces in the Target platform interface table. Run the workflow to generate the IP core.

You can integrate the generated IP core into your own custom Intel reference design. To learn more,
see Define and Register Custom Board and Reference Design for Zynq Workflow.

Intel SoC Reference Design: Target the Intel Arria 10 SoC
Development Kit with DDR4 external memory access
You can use a new Default system with External DDR4 Memory Access reference design
when you specify Altera Arria10 SoC development kit as the target platform. To use this
reference design, you must have HDL Verifier and the HDL Coder Support Package for Intel SoC
Devices.

When you use this reference design, you can access the DDR4 external memory on the Arria 10 SoC
development kit with AXI4 Master interface. Using AXI4 Master interface, you can also create custom
reference designs for other Intel FPGAs and Intel SoCs for external memory access.

For more information. see Default System with External DDR4 Memory Access Reference Design.

Simulink test point port mapping in IP Core Generation and Simulink
Real-Time FPGA I/O workflows
The code generator now supports test point ports in IP Core Generation and Simulink Real-Time
FPGA I/O workflows that use Xilinx Vivado and Intel Quartus Prime as the synthesis tools.

When you enable DUT output port generation for test point signals in the HDL code and use the IP
Core Generation workflow infrastructure, you can map the test point ports to AXI4, AXI4-Lite, or
External Port interfaces in the Target platform interface table. The code generator stores this
interface mapping information for the test point ports on the DUT that you can reload across
subsequent runs of the workflow.

 IP Core Generation and Hardware Deployment

11-13

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/custom-ip-core-generation.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/model-design-for-axi4-stream-interface-generation.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/examples/define-and-register-custom-board-and-reference-design-for-zynq-workflow.html
https://www.mathworks.com/help/releases/R2018a/supportpkg/alterasochdlcoder/ug/default-system-with-external-ddr4-memory-access-reference-design.html

When you run the IP Core Generation workflow and generate the software interface model, you
see the test point output port connected to a commented out Scope block for observing and
debugging the signals.

To learn more, see Model and Debug Test Point Signals with HDL Coder™.

Audio Reference Design Example on ZYBO Board: Create custom
reference design to run audio algorithm on ZYBO board
This HDL Coder example extends the audio reference design example on the ZedBoard™ to the
ZYBO™ board. Using this example, you can learn how to create a custom reference design that
receives audio input from the ZYBO board, processes the input signal, and transmits the processed
audio output.

IP Core Generation of I2C Master Controller Example: Generate IP core
for Stateflow-Based I2C Master Controller to configure Audio Codec
chip
Using this HDL Coder example, you can learn how to model a generic I2C Master Controller in
Simulink by using Stateflow blocks. Use the Master Controller to model an I2C Controller that can
configure the Audio Codec chip. Then, run the IP Core Generation workflow to generate an HDL
IP core for the I2C Controller. You can use the generated I2C Controller IP core in your custom
reference design.

Ethernet programming method being removed
The Ethernet programming method is being removed. Use the Download method to program your
target device.

Compatibility Considerations
In R2018a, if you run an HDL Workflow script that uses Ethernet as the programming method, HDL
Coder generates an error. If you use Ethernet as the programming method and export the Workflow
Advisor settings to a script, you see this code snippet in your script:

hWC.ProgrammingMethod = hdlcoder.ProgrammingMethod.Ethernet

To avoid this error, in your script, change the programming method to Download. Then, run the
script.

hWC.ProgrammingMethod = hdlcoder.ProgrammingMethod.Download

You can also use JTAG and Custom as the programming methods.

For more information, see Program Target FPGA Boards or SoC Devices.

Updates to supported software
HDL Coder has been tested with:

R2018a

11-14

https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/_mw_7cdfb594-d7c6-4cf5-8370-6ae1b9d1abf1.html
https://www.mathworks.com/help/releases/R2018a/hdlcoder/ug/program-target-soc-device.html

• Xilinx Vivado Design Suite 2017.2
• Intel Quartus Prime 17.0

See Supported Third-Party Tools and Hardware.

 IP Core Generation and Hardware Deployment

11-15

https://www.mathworks.com/help/releases/R2018a/hdlcoder/gs/language-and-tool-version-support.html

R2017b

Version: 3.11

New Features

Bug Fixes

12

Model and Architecture Design

Model Advisor Checks: Check and update your Simulink model for HDL
code generation compatibility
With the Model Advisor support in HDL Coder, you can now check and update your Simulink model or
subsystem for compatiblity with HDL code generation. The Model Advisor checks for model
configuration settings, subsystems and block settings, support with native floating point, and
conformance to industry standard rules.

You can run all the checks, a certain group of checks, or individual checks in the Model Advisor. To fix
warnings or failures that are reported by the checks, use the Model Advisor recommended settings.
To open the Model Advisor checks for HDL Coder at the command line, use the hdlmodelchecker
function.

For more information, see:

• Getting Started with the HDL Model Checker
• Checks In the HDL Model Checker

Simulink Test Points in HDL: Debug internal signals by automatically
routing the signals to top-level HDL ports
Test points are signals that you can use to easily debug and observe the simulation results at various
points in your Simulink model. In R2017b, with the HDL code generation support for test points, you
can now generate code for these signals and further debug the generated code in downstream
workflows. See also Test Points.

To see the test point signals in the generated HDL code:

• From the UI, in the Configuration Parameters dialog box, select Enable HDL DUT port generation
for test points.

• At the command line, specify EnableTestpoints with hdlset_param or makehdl.

When you generate HDL code, the code generator creates an output port for the test point signal, and
then propagates the signal to the DUT as an additional output port. This capability makes debugging
your design easier because the code generator can propagate signals marked as test points deep
within your Subsystem hierarchy to the DUT output ports.

For an example, see Model and Debug Test Point Signals with HDL Coder™.

Floating-point Support for Simulink Real-Time FPGA I/O: Generate
single-precision floating point HDL for communication over the
Simulink Real-Time PCIe Interface
When you use the Simulink Real-Time FPGA I/O workflow, you can have Single data type
signals at the subsystem DUT ports and map the signals to PCIe or PCI Interfaces in the Target
platform interface table. To map Single data type signals to PCIe interfaces, in the Configuration
Parameters dialog box, on the HDL Code Generation> Global Settings> Floating Point Target
tab, set the Floating Point Library to Native Floating Point.

R2017b

12-2

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/hdlmodelchecker.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/getting-started-with-the-hdl-model-checker.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/overview-of-checks-in-the-hdl-model-checker.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/working-with-test-points.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/hdl-code-generation-pane-global-settings-1.html#mw_fa72c806-816f-42f5-900e-ca39a51f0ed6
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/hdl-code-generation-pane-global-settings-1.html#mw_fa72c806-816f-42f5-900e-ca39a51f0ed6
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/enabletestpoints.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/_mw_7cdfb594-d7c6-4cf5-8370-6ae1b9d1abf1.html

Additional single-precision floating-point operators and block support
HDL Coder now supports these blocks with native floating point:

• Direct Lookup Table (n-D)
• HDL Reciprocal
• Comprehensively supports all Function modes of Math Function block.
• Supports all Function modes of Trigonometric Function block except asinh, acosh, and atanh.
• Float Typecast

The code generator now supports these block modes:

• Switch block where Criteria for passing first input can be u2 > Threshold, u2 >=
Threshold, or u2 ~= 0. Previously, to generate HDL code in native floating-point mode, you had
to use u2 ~= 0 as the Criteria for passing first input.

• Relational Operator block where Relational Operator parameter when you input single data
type signals can be isInf, isNaN, or isFinite. The modes check and output true for inf or -
inf, nan, and so on.

See Also Simulink Blocks Supported with Native Floating-Point.

Improvements to native floating-point operators and algorithms
In R2017b, HDL Coder provides optimized algorithms for these blocks or operators in the native
floating-point mode.

• When you use an Add or Subtract block, the implementation is now more optimal and uses fewer
resources. The reduction in area usage on the target device is due to the block implementation
using a simpler logic to handle inf and nan inputs and performing the addition or subtraction of
the input mantissas using two 28-bit adders instead of one 48-bit adder.

• If you use a Data Type Conversion block that converts from Single to a boolean data type, the
generated model uses Bit Slice blocks to extract the exponent and mantissa, and then compares
the result with zero. When you convert from ufix1 to a Single data type, the generated model
uses a Switch block. These block implementations are more optimal and use fewer hardware
resources.

• If you use a Gain block with Gain parameter set to 1, the generated model uses a wire to pass the
input to the output. For a Gain parameter of -1, the generated model shows a Unary Minus
block that inverts the polarity of the input signal. These block optimizations use zero latency and
reduces the resource usage on the target platform.

Input Range Reduction setting for Trigonometric Function blocks in
native floating-point mode
If you have Single data type inputs to the Trigonometric Function block, you can use the
InputRangeReduction setting in the Native Floating Point tab.

By default, this setting is enabled for the block, and it assumes that your input range is unbounded. If
your input to the block is bounded in the range [-pi, pi], your design does not require the logic to
reduce the input range. In that case, you can disable this setting, and the block implementation
incurs a lower latency and uses fewer resources on the target device.

 Model and Architecture Design

12-3

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/hdlreciprocal.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/mathfunction.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/floattypecast.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/block-implementation-parameters.html#mw_cf86659f-f21c-4eaf-a555-d573d12a9659

Block-level latency customization for Discrete Transfer Function and
Discrete Time Integrator blocks with native floating-point
For the Discrete Transfer Fcn and Discrete-Time Integrator blocks, you can now specify native
floating point settings at the block level which includes HandleDenormals, LatencyStrategy, and
MantissaMultiplyStrategy settings.

R2017b

12-4

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/discretetransferfcn.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/discretetimeintegrator.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/block-implementation-parameters.html#bvmml4t-1
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/block-implementation-parameters.html#bvmwbnb-1
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/block-implementation-parameters.html#bvmwcnl-1

Block Enhancements

Minimum Resource FFT/IFFT: Reduce resource usage with the Burst
Radix 2 architecture of the HDL-Optimized FFT (requires DSP System
Toolbox)
You can now choose a minimum resource architecture for the HDL-optimized FFT blocks and System
objects. To use this feature, select the Burst Radix 2 architecture in these blocks and System
objects:

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

Support for scalar addressing mode with vector data input to hdl.RAM
System Object
You can now use a scalar address mode with vector data input to the hdl.RAM System Object. With a
vector data input, the write enable and address inputs can be scalar, and the system object applies
the same operation to each RAM bank.

Previously, the inputs to the system object had to be all scalars or all vectors.

New HDL RAMs Block Library and hdl.RAM System Object based blocks
The HDL Coder block library in Simulink now has an HDL RAMs block library that consists of all RAM
blocks and new MATLAB System blocks that are based on the hdl.RAM System object. These blocks
are the Dual Port RAM System, Simple Dual Port RAM System, and Single Port RAM System.
Previously, all RAM blocks were part of the HDL Operations block library.

 Block Enhancements

12-5

https://www.mathworks.com/help/releases/R2017b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.hdlfft-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.hdlifft-system-object.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/hdl.ram-system-object.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/dualportramsystem.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/simpledualportramsystem.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/singleportramsystem.html

With the hdl.RAM System Object based blocks, you can:

• Specify an initial value for the RAM. Double-click the block to open the Block Parameters dialog
box, and then enter a value for Specify the RAM initial value.

• Obtain faster simulation results when you use these blocks in your Simulink model.
• Create parallel RAM banks when you use vector data by leveraging the hdl.RAM System object

functionality.
• Obtain higher performance and support for large data memories.

Synchronous versions of Unit Delay blocks with reset and enable ports
in Discrete block library
In R2017b, the code generator introduces synchronous versions of the Unit Delay block with reset
and enable ports in the Discrete block library in the HDL Coder library. The blocks correspond to
Unit Delay Enabled Synchronous, Unit Delay Resettable Synchronous, and Unit Delay Enabled
Resettable Synchronous.

R2017b

12-6

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/hdl.ram-system-object.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/unitdelayenabledsynchronous.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/unitdelayresettablesynchronous.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/unitdelayenabledresettablesynchronous.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/unitdelayenabledresettablesynchronous.html

The blocks use the Enabled Delay, Resettable Delay, and the Enabled Resettable Delay block with a
Delay length of 1 in combination with the State Control block in Synchronous mode. The
synchronous behavior of the State Control block generates cleaner HDL code and uses fewer
hardware resources.

Bilateral filter, bird's-eye-view transform, and line buffer for vision
applications
Vision HDL Toolbox introduces three blocks that support HDL code generation for streaming video
processing designs:

• Bilateral Filter — Perform Gaussian filtering with edge preservation
• Birds-Eye View— Transform forward-facing video to a top-down perspective
• Line Buffer — Store a sliding window of pixels as part of developing custom filter algorithms

HDL code generation support for Bus Element port blocks
In R2017b, you can generate HDL code for Simulink models that use the In Bus Element and Out Bus
Element blocks. These bus element port blocks provide a simple and flexible way to use bus signals as
inputs and outputs to subsystems.

See also Simplify Subsystem Bus Interfaces (Simulink).

One-hot and two-hot encoding schemes for enumeration types
You can now use one-hot, two-hot, and binary encoding schemes to represent enumerated types in
the generated HDL code. By default, the code generator uses a decimal encoding in Verilog and
VHDL-native enumerated types in VHDL. To choose a different encoding scheme:

 Block Enhancements

12-7

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/statecontrol.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/bilateralfilter.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/birdseyeview.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/linebuffer.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/inbuselement.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/outbuselement.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/outbuselement.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/simplify-subsystem-bus-interfaces.html

• From the UI, open the Configuration Parameters dialog box, and in the HDL Code
GenerationGlobal SettingsCoding Style tab, specify Enumerated Type Encoding Scheme.

At the command line, use EnumEncodingScheme.

This table shows the generated Verilog code from various encoding schemes for a Stateflow Chart
that has four states.

Encoding Schemes

Default Binary One-Hot Two-Hot
parameter
is_Chart_IN_s_idle = 2'd0,
is_Chart_IN_s_rx = 2'd1,
is_Chart_IN_s_wait_0 = 2'd2,
is_Chart_IN_s_wait_tb = 2'd3;

parameter
is_Chart_IN_s_idle = 2'b00,
is_Chart_IN_s_rx = 2'b01,
is_Chart_IN_s_wait_0 = 2'b10,
is_Chart_IN_s_wait_tb = 2'b11;

parameter
is_Chart_IN_s_idle = 4'b0001,
is_Chart_IN_s_rx = 4'b0010,
is_Chart_IN_s_wait_0 = 4'b0100,
is_Chart_IN_s_wait_tb = 4'b1000;

parameter
is_Chart_IN_s_idle = 4'b0011,
is_Chart_IN_s_rx = 4'b0101,
is_Chart_IN_s_wait_0 = 4'b0110,
is_Chart_IN_s_wait_tb = 4'b1001;

Custom header and footer comments in generated HDL code
In R2017b, you can specify custom header and footer comments for the generated HDL code. Using
these custom comments, you can create templates for the header and footer comments that you can
reuse across multiple designs. For example, you can specify arguments such as title, author, modified
date, and so on.

// ===
// Title : <%Title%>
// Project : <%Project%>
// Author : <%Author%>
//
// Revision : $Revision$
// Date Modified : $Date$
// ===

• From the UI, open the Configuration Parameters dialog box, and in the HDL Code Generation >
Global Settings > Coding Style tab, specify File Comment Customization and Custom File
Header Comment.

At the command line, use CustomFileFooterComment and CustomFileHeaderComment.

R2017b

12-8

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/enumencodingscheme.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/customfilefootercomment.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/customfileheadercomment.html

Code Generation and Verification

Changes to HDL Code Generation Panel in Configuration Parameters
Dialog Box
Parameters Added

• Enable HDL DUT port generation for test points in the Global Settings > Ports tab
• In the Global Settings > Coding style tab:

• Enumerated Type Encoding Scheme
• Custom File Header Comment
• Custom File Footer Comment

• Enable-based constraints in the Target and Optimizations > General tab
• Check for presence of reals in generated HDL code in the Global Settings >

Diagnostics tab

Parameters Moved

• These parameters moved from the Target and Optimizations > General tab to the Global
Settings > Coding Style tab:

• Optimize timing controller check box
• Timing controller architecture

• The Generate multicycle path information check box in the EDA Tool Scripts tab moved
to the Target and Optimizations > General tab and is now called Register-to-register path
info.

 Code Generation and Verification

12-9

Speed and Area Optimizations

Vector Input Multiply-Accumulate (MAC) Block: Map arithmetic
operations efficiently to FPGA DSP slices
The code generator now supports a Multiply-Accumulate block that performs a multiply-accumulate
operation on the input vectors and efficiently maps the generated HDL code to DSP units on the
target FPGA device. Using the block, you can:

• Perform matrix multiplication operations. For example, if you have two matrix inputs with
dimensions N-by-M and M-by-P, you can compute the result by using N-by-P multiply-
accumulate operations in parallel. By combining these operations with optimizations such as
resource sharing and streaming, you can improve the hardware performance by efficiently
mapping the generated HDL code to DSP units on the FPGA.

• Replace a sequence of multiplication and addition operations, such as in filter blocks, and improve
the performance on hardware by mapping to DSP slices on the FPGA.

The Multiply-Accumulate block is available in the HDL Operations sublibrary in the HDL Coder
block library. The block has Auto, Parallel, and Serial HDL Architecture implementations that
you can choose from.

Hierarchical Clock Rate Pipelining: Apply clock rate pipelining across
hierarchical boundaries
You can now use clock rate pipelining more widely across subsystem boundaries without having to
flatten the hierarchy. Preserving the subsystem hierarchy:

• Improves the modularity of your design and makes navigation through the generated model easier
especially in large designs with complex hierarchies.

• Improves readability of the generated HDL code by creating multiple Verilog or VHDL files for the
various Subsystem blocks in your design.

To use this optimization, disable FlattenHierarchy on the top-level DUT Subsystem. See also Clock-
Rate Pipelining.

Support for enable-based multicycle path constraints
In multirate designs with a single clock signal, use Enable based constraints to meet the timing
requirements for data paths operating at a rate slower than the base rate. HDL Coder generates a
constraints file that specifies the enabled-based multicycle path constraints.

Previously, to generate the multicycle path information, you used the MulticyclePathInfo setting.
This setting corresponds to the Register-to-register path info in the Target and Optimizations >
General tab. Now, to generate the multicycle constraints file:

• In the Configuration Parameters dialog box, on the Target and Optimizations pane, select the
Enable based constraints check box.

• At the command line, use MulticyclePathConstraints.

When you use Enable based constraints:

R2017b

12-10

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/multiplyaccumulate.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/clock-rate-pipelining.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/clock-rate-pipelining.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ref/multicyclepathconstraints.html

• The generated constraints are more robust to name changes in synthesis tools.
• HDL code generation is faster than when you use the Register-to-register path info setting.

For more information, see Meet Timing Requirements Using Enable-Based Multicycle Path
Constraints.

Clock-rate pipelining enhancements
Latency reduction in the presence of design delays

The code generator can now absorb design delays that have a delay length greater than 1 inside a
clock rate pipelining region. This optimization avoids the additional latency by accommodating the
slower design delays as part of the faster clock-rate pipeline registers. Based on the length of the
design delay and the Oversampling factor that you specify, HDL Coder inserts a certain number of
pipeline registers that is equal to the Oversampling factor times the delay length.

Resource sharing improvements with clock rate pipelining

The code generator now does not have to add matching delays at the input and output ports when the
resource sharing optimization is applied within a clock rate pipelining region. This optimization
reduces the latency and resource usage significantly, especially for large values of Sharing factor.

This figure shows the generated model when resource sharing is applied in a clock rate pipelining
region in R2017b and prior releases.

 Speed and Area Optimizations

12-11

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/enable-based-multicycle-constraints.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/enable-based-multicycle-constraints.html

IP Core Generation and Hardware Deployment
AXI4 Master Interface: Facilitate communication between your design
and external memory by using the AXI4 Master protocol for more
flexible data access
When your design uses algorithms that require accessing large data sets from an external memory,
you can generate an HDL IP core with AXI4 Master interface that can communicate between your
design and the external memory controller IP by using the AXI4 Master protocol. Use the AXI4
Master interface when your:

• Design targets multiframe video processing applications. You can store the image data in external
memory, such as a DDR3 memory on board, and then read or write the images to your design in a
burst fashion for high-speed processing.

• Algorithm must access memory data in a nonstreaming arbitrary pattern.
• DUT IP core must control other IPs with the AXI4 slave interface in the system. This capability is

especially useful in standalone FPGA devices.

If you use Xilinx Zynq ZC706 evaluation kit as the Target platform, you can integrate the
generated HDL IP core into the Default system with External DDR3 Memory Access
reference design. Optionally, you can integrate the HDL IP core with AXI4 Master Interface into your
own custom reference design by using the addAXI4MasterInterface method of the
hdlcoder.ReferenceDesign class.

To learn more, see Model Design for AXI4 Master Interface Generation.

IP Core Generation Support for Xilinx System Generator: Generate an
HDL IP core for DUT containing System Generator blocks
When you use the IP Core Generation workflow or workflows that use the IP Core
Generation workflow infrastructure such as Simulink Real-Time FPGA I/O, you can have
Xilinx System Generator Subsystem blocks inside the DUT.

To learn how to generate HDL code from your DUT containing Xilinx System Generator blocks, see
Using Xilinx System Generator for DSP with HDL Coder.

INOUT port type support for External Port interface in IP Core
Generation workflow
With the IP Core Generation workflow, you can now specify INOUT port types on a blackbox
subsystem and then map the corresponding DUT ports to External Port interfaces in the Target
platform interface table when you run the workflow.

To learn how to specify INOUT port types, see Specify Bidirectional Ports.

Faster Simulink Real-Time FPGA I/O model build time with version
register in generated IP core
For the newer Speedgoat boards that use the IP Core Generation workflow infrastructure, when
you use the Simulink Real-Time FPGA I/O workflow, the generated IP core now contains a

R2017b

12-12

https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/model-design-for-axi4-master-interface-generation.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/using-xilinx-system-generator-for-dsp-with-hdl-coder.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/ug/specify-bidirectional-ports.html

unique timestamp. The IP Core Generation report shows an IPCore_Timestamp register that
contains information about when the IP core was created up to the minute time value. The code
generator appends this information to the bitstream file name, and then copies the file to the current
working directory for easier access.

By using the timestamp, you can match the packaged HDL IP core to the FPGA bitstream that gets
downloaded to the board. When you run the workflow, HDL Coder generates a Simulink Real-
Time FPGA I/O interface model that contains the timestamp information as part of the Setup block.
When you build this model, the code generator compares the timestamp with the FPGA bitstream file
name that is used to program the FPGA. If there is a match in the timestamp name, the FPGA no
longer needs to be reprogrammed, which significantly reduces the model build time.

Default system with External DDR3 Memory Access reference design
You can use a new Default system with External DDR3 Memory Access reference design
when you specify Xilinx Zynq ZC706 evaluation kit as the target platform.

You must have HDL Verifier and the HDL Coder Support Package for Xilinx Zynq Platform.

Updates to supported software
HDL Coder has been tested with:

• Xilinx Vivado Design Suite 2016.4
• Intel Quartus Prime 16.1

See Supported Third-Party Tools and Hardware.

HDL Coder support packages renamed
• The HDL Coder Support Package for Altera FPGA Boards has been renamed to the HDL Coder

Support Package for Intel FPGA Boards.
• The HDL Coder Support Package for Altera SoC Platform has been renamed to the HDL Coder

Support Package for Intel SoC Devices.
• The HDL Coder Support Package for Xilinx Zynq-7000 Platform has been renamed to the HDL

Coder Support Package for Xilinx Zynq Platform.

See also HDL Coder Supported Hardware.

 IP Core Generation and Hardware Deployment

12-13

https://www.mathworks.com/help/releases/R2017b/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2017b/hdlcoder/gs/hdl-coder-supported-hardware.html

R2017a

Version: 3.10

New Features

Bug Fixes

Compatibility Considerations

13

Model and Architecture Design

HDL Floating Point Operations Library: Easily find additional and
existing single-precision floating-point blocks supported for HDL code
generation
HDL Coder provides a HDL Floating Point Operations block library that consists of Simulink
blocks configured for HDL code generation with the native floating-point support.

In R2017a, HDL Coder added native floating-point support for these blocks in the HDL Floating
Point Operations Library.

• Discrete FIR Filter with Fully Parallel as HDL Architecture
• Discrete-Time Integrator
• Discrete PID Controller
• Rounding Function
• Trigonometric Function with Function as cos + jsin
• Sign
• Math Function block with Function as:

• mod
• rem

See also HDL Floating Point Operations.

Floating-Point Latency Customization at Block-Level
For blocks that support code generation in native floating-point mode, you can now specify custom
block-level settings. By default, the blocks in your design inherit the native floating-point settings that
you specify in the Configuration Parameters dialog box. To specify custom settings for these blocks,
right-click the block and open HDL Code > HDL Block Properties, and then select the Native
Floating Point tab. Using custom settings for the blocks, you can optimize your design
implementation on the target FPGA device for area and speed.

For most blocks, the Native Floating Point tab contains the HandleDenormals and
LatencyStrategy settings. If there are multipliers in your design, you can specify how you want HDL
Coder to implement the mantissa multiplication operation for individual blocks by using the
MantissaMultiplyStrategy setting. This figure shows the HDL Block Properties dialog box for a
Product block.

R2017a

13-2

https://www.mathworks.com/help/releases/R2017a/hdlcoder/hdl-operations-1.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/block-implementation-parameters.html#bvmml4t-1
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/block-implementation-parameters.html#bvmwbnb-1
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/block-implementation-parameters.html#bvmwcnl-1

Additional Block and System Object Support with Native Floating
Point
HDL Coder now supports these blocks and system objects with native floating point.

• All RAM blocks, which include:

• Single Port RAM
• Dual Port RAM
• Simple Dual Port RAM
• Dual Rate Dual port RAM

• Serializer1D and Deserializer1D
• hdl.RAM

See Also Operators and Simulink Blocks Supported for Native Floating-Point.

Custom reference model prefix specification
For module names or files that are generated for a model reference, you can now specify a custom
reference model prefix. Previously, HDL Coder prefixed the referenced model with modelname_.

To add a prefix for the referenced model, in the HDL Block Properties dialog box, for
ReferenceModelPrefix, specify the prefix as a text. When generating code, HDL Coder applies this
prefix to the names of generated HDL files for submodels, package names, and HDL identifiers. By
default, the prefix is the name of the top-level subsystem.

See also Model.

 Model and Architecture Design

13-3

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/hdl-coder-support-for-native-floating-point-library-mapping.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/model.html

GenerateWebview parameter name changed to HDLGenerateWebview
To include a model Web view in the HDL Code Generation report programmatically, you now use the
HDLGenerateWebview parameter. This parameter corresponds to the Generate model Web view
setting on the HDL Code Generation pane in the Configuration Parameters dialog box. Previously,
you used the GenerateWebview parameter.

HDL Coder now distinguishes the HDLGenerateWebview parameter from the GenerateWebview
parameter that Embedded Coder® uses.

Compatibility Considerations
In R2017a, if you run a previously saved MATLAB script that used hdlset_param or makehdl with
the GenerateWebview parameter, HDL Coder generates an error. To fix the error, change the
parameter name to HDLGenerateWebview, and then run the script.

If you load a pre-R2017a model that was saved with the GenerateWebview parameter enabled, HDL
Coder ignores the parameter setting. To generate the model Web view, enable the
HDLGenerateWebview parameter.

Comments in HDL code for Simulink blocks with text annotations
If you add text annotations with connecting lines to Simulink blocks, HDL Coder generates comments
in the HDL code for the blocks. The comments make it easier to map your algorithm in Simulink to
the generated code.

Previously, the comments were grouped together on top of the process declaration statement in
Verilog or the entity declaration statement in VHDL. For example, consider this Simulink model that
performs a multiply-accumulate operation.

R2017a

13-4

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/hdlgeneratewebview.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/makehdl.html

This table shows the generated Verilog code from the model for R2017a and earlier releases.

 Model and Architecture Design

13-5

R2017a Releases before R2017a
module MAC
 (a,
 b,
 c,
 Out);

 input [15:0] a; // uint16
 input [15:0] b; // uint16
 input [15:0] c; // uint16
 output [31:0] Out; // uint32

 wire [31:0] Product_out1; // uint32
 wire [31:0] Add_1; // ufix32
 wire [31:0] Add_out1; // uint32

 // Initial product computation
 assign Product_out1 = b * c;

 // Adds product of the numbers to an accumulator
 assign Add_1 = {16'b0, a};
 assign Add_out1 = Add_1 + Product_out1;

 assign Out = Add_out1;

endmodule // MAC

module MAC
 (
 a,
 b,
 c,
 Out
);

 input [15:0] a; // uint16
 input [15:0] b; // uint16
 input [15:0] c; // uint16
 output [31:0] Out; // uint32

 wire [31:0] Product_out1; // uint32
 wire [31:0] Add_1; // ufix32
 wire [31:0] Add_out1; // uint32

 // Adds the product of the number to an accumulator
 //
 // Initial product computation

 assign Product_out1 = b * c;

 assign Add_1 = {16'b0, a};
 assign Add_out1 = Add_1 + Product_out1;

 assign Out = Add_out1;

endmodule // MAC

See also Generate Code with Annotations or Comments.

R2017a

13-6

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/annotating-generated-code-with-comments-and-requirements.html

Block Enhancements
For Each Subsystems: Reduce block replication and improve code
reuse in HDL-targeted designs
HDL Coder supports the For Each Subsystem block for code generation. The block:

• Supports vector processing that enables you to process individual elements or subarrays of an
input signal simultaneously. You no longer need to split the signals or create and connect replicas
of a subsystem to model the same algorithm.

• Improves readability of code by using a for-generate loop in the generated HDL code that
iterates through each element of the input signal. The elements can be scalars or subarrays of the
input signal. The for-generate loop is cleaner and reduces the number of lines of code, which can
otherwise result in hundreds of lines of code for large vector signals.

• Supports HDL code generation for all data types, Simulink blocks, and predefined and user-
defined system objects.

• Supports optimizations on and inside the block, such as resource sharing and pipelining. The
parallel processing capability of the For Each Subsystem block combined with the optimizations
that you specify provides high performance on the target FPGA device.

The For Each Subsystem block is available as part of the Ports & Subsystems block library in HDL
Coder.

For an example that shows how to generate HDL code for the For Each Subsystem, see Generate
HDL Code for Blocks Inside For Each Subsystem.

HDL Optimized Filters: Model and generate optimized hardware
implementations for FIR filters (requires DSP System Toolbox)
This release introduces the Discrete FIR Filter HDL Optimized block and dsp.HDLFIRFilter
System object, which model FIR filter structures optimized for HDL code generation. The filter is
sample-based. Control signals are provided for flow control. Resource sharing options allow tradeoffs
between throughput and resource utilization. The block and object provide cycle-accurate models of
the generated HDL code, including clock rates and latency.

HDL Channelizer Block and System Object: Isolate narrowband
channels from a wideband signal and generate HDL with efficient
multiplier usage (requires DSP System Toolbox)
This release introduces the Channelizer HDL Optimized block and dsp.HDLChannelizer System
object, which model a polyphase filter bank and fast Fourier transform and support HDL code
generation. The algorithm provides an efficient hardware implementation and hardware-friendly
control signals. You can achieve giga-sample-per-second (GSPS) throughput with vector input.

Gigasample per Second (GSPS) Signal Processing: Increase
throughput of FIR decimation algorithms by using frame input
You can now generate HDL code from the FIR Decimation block when the block uses frame input. The
block accepts a column vector of input data. Each element of the vector represents a sample in time.

 Block Enhancements

13-7

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/generate-hdl-code-for-blocks-inside-for-each-subsystem.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/generate-hdl-code-for-blocks-inside-for-each-subsystem.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.hdlfirfilter-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/channelizerhdloptimized.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.hdlchannelizer-class.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/firdecimation.html

The coder implements a parallel HDL architecture for the filter. This capability increases throughput
in hardware designs. To configure the block for frame input:

1 Connect a column vector signal to the FIR Decimation block input port.
2 Specify Input processing as Columns as channels (frame based).
3 Set Rate options to Enforce single-rate processing.
4 Right-click the block and open HDL Code > HDL Block Properties. Set the Architecture to

Frame Based. The block implements a parallel HDL architecture. See Frame-Based
Architecture.

Enhancements to MATLAB Function block support in synchronous
subsystems
For a MATLAB Function block inside a synchronous subsystem, you can now use the combinational
and sequential logic portions in one MATLAB function. Previously, you created two separate MATLAB
Function blocks, one for the combinational logic, and the other for the sequential logic.

To use the combinational and sequential logic portions inside one MATLAB Function block, in the
Ports and Data Manager dialog box, select the Allow direct feedthrough check box. The output
function can then depend on inputs and persistent variables. For example, you can now use this
MATLAB function that has two outputs, with one output depending on the input, and the other output
depending on a persistent variable.

function [y1, y2] = fcn(u, v)

persistent p;
if isempty(p)
 p = uint8(0);
end

y1 = p;
y2 = v;

p = u;

Using the MATLAB Function block inside a synchronous subsystem generates cleaner HDL code and
uses fewer hardware resources. See also State Control.

HDL Coder support for blocks that support bus signal treated as
vector
HDL Coder can now generate code for blocks that support the Bus signal treated as vector setting.
These blocks are not bus-capable, but they can accept a vector signal. Previously, to generate HDL
code for these blocks, you used a Bus to Vector block to convert the bus signals to vectors for input to
the block.

When you use these blocks with buses, ensure that:

• Input to the blocks is a virtual bus.
• Constituent signals of the bus have the same attributes.

R2017a

13-8

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/configuring-hdl-filter-architectures.html#bvd5s3h
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/configuring-hdl-filter-architectures.html#bvd5s3h
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/statecontrol.html

• Bus signal treated as vector is set to none or warning. This setting is available in the
Diagnostics > Connectivity pane in the Configuration Parameters dialog box. See also Bus
signal treated as vector (Simulink).

HDL code generation support for Bus Assignment block with
nonvirtual bus
In your Simulink model, you can now use Bus Assignment blocks with nonvirtual bus signals for HDL
code generation. Previously, when you used Bus Assignment blocks, to generate HDL code, you
converted the nonvirtual buses to virtual buses.

Additional HDL Coder bus support
HDL Coder now supports the:

• Ground block with bus input
• Constant block with a value of 0 and bus as Output data type

HDL code generation support for System Objects with enumeration
types
You can now generate HDL code for System objects with enumeration types:

• From MATLAB, by using the HDL Coder app or MATLAB to HDL Workflow Advisor
• From Simulink, for System objects that are used with MATLAB System or MATLAB Function

blocks

You can also use array of enumeration types and enumeration types as fields in Simulink bus data
types for HDL code generation.

 Block Enhancements

13-9

https://www.mathworks.com/help/releases/R2017a/simulink/gui/bus-signal-treated-as-vector.html
https://www.mathworks.com/help/releases/R2017a/simulink/gui/bus-signal-treated-as-vector.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/busassignment.html

Code Generation and Verification
Native Floating-Point Testbench: Generate SystemVerilog DPI,
cosimulation, and FPGA-in-the-loop test benches with single-precision
data types (requires HDL Verifier)
Before generating code, if you enable the native floating-point support, you can now verify the HDL
implementation of your design by using any of these testbenches:

• SystemVerilog DPI test bench
• Cosimulation
• FPGA-in-the-loop

See also Verify the Generated Code from Native Floating-Point.

More fixed-size variable information in Fixed-Point Conversion step of
HDL Coder App
In R2017a, when you convert floating-point MATLAB code to fixed-point MATLAB code, the target
interface step provides information about the converted fixed-point code. Previously, in the target
interface step, the app displayed the original floating-point MATLAB code.

In the Fixed-Point Conversion step, after fixed-point conversion, if you place your cursor over a
converted variable or expression, the app displays the fixed-point type information.

For a variable with a fixed-point type in the original code, when you place your cursor over the
variable before or after conversion, the app displays the fixed-point type information.

Comments in generated HDL code for MATLAB System blocks
In R2017a, if you have comments in your MATLAB System block, HDL Coder passes these comments
to the generated HDL code. These comments make it easier to map your algorithm in MATLAB to the
generated HDL code.

Global reset signals minimization in generated HDL Code
In R2017a, you can use the Minimize global resets setting to minimize or remove global reset
signals in the generated HDL code. To specify this setting, in the Configuration Parameters dialog

R2017a

13-10

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/verifying-the-generated-hdl-from-native-floating-point.html

box, on the HDL Code Generation > Global Settings > Ports tab, select the Minimize global
resets check box.

See also MinimizeGlobalResets

HDL code generation support for DUT subsystem with custom HDL
properties
For any DUT subsystem, you can now specify custom HDL block property settings and generate HDL
code. To specify these custom settings, right-click the subsystem and select HDL Code > HDL Block
Properties.

Previously, to generate HDL code for any DUT subsystem, the subsystem used the default HDL block
property settings.

Changes in HDL Code Generation Panel in Configuration Parameters
Dialog Box
Parameters Added

• Minimize global resets in the Global Settings > Ports tab
• In the Test Bench pane Test Bench Generation Output section:

• SystemVerilog DPI test bench
• HDL code coverage check box

Parameters Moved

These parameters moved from the Target and Optimizations > General tab to the Global
Settings > Ports tab:

• Minimize clock enables
• Use Trigger as clock

Parameters Removed

Cosimulation model for use with:

Syntax Highlighting of Generated HDL Code in HTML Report
In R2017a, enhancements in syntax highlighting greatly improve the readability of the generated
HDL code. To see the syntax highlighting, before generating HDL code, in the Configuration
Parameters dialog box, on the HDL Code Generation pane, select the Generate traceability
report check box.

Previously, the Code Generation report used two highlighting colors: blue for code and green for
comments. With this change, HDL-specific keywords are highlighted in blue and the rest of the HDL
code is in black. Comments in the code are still highlighted in green.

 Code Generation and Verification

13-11

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/minimizeglobalresets.html

Speed and Area Optimizations

Improvements to delay balancing in multirate regions
If you have local multirate regions in your design or introduce them through clock-rate pipelining,
HDL Coder improves delay optimization in these regions by reducing excessive matching delays. This
optimization results in area, timing, and power-efficient designs, particularly in cases with significant
rate differences.

Functionality Being Removed or Changed
Functionality Result Use Instead Compatibility Considerations
MaxComputat
ionLatency

Still runs. The code
generator displays a
warning.

Oversampling with
clock-rate pipelining.

Replace all instances of
MaxComputationLatency with
Oversampling.

MaxOversamp
ling

Still runs. The code
generator displays a
warning.

Oversampling with
clock-rate pipelining.

Replace all instances of
MaxOversampling with
Oversampling.

R2017a

13-12

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/oversampling.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/oversampling.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/oversampling.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/oversampling.html

IP Core Generation and Hardware Deployment

Data Type Support for AXI4 Slave: Map floating-point signals and
vector signals to AXI4 slave interfaces in IP core generation
When using the IP Core Generation workflow, in the Target platform interface table, you can
map single and vector signals at the DUT ports to AXI4 or AXI4-Lite interfaces.

The workflow for vector signals includes an IP Core Generation report that displays:

• Address offsets of AXI4 interface accessible registers generated for each input, output, and strobe
signal in the Register Address Mapping section. The additional strobe register for each input
and output vector data maintains the synchronization across multiple, sequential AXI4 read and
write operations. For each input and output vector signal, this section displays the size of the
vector, and the starting and ending address offsets.

• A Vector Data Read/Write with Strobe Synchronization subsection in the IP Core User’s
Guide section that shows how HDL Coder handles vector data and synchronizes read and write
operations across the AXI4 interface.

See also Custom IP Core Generation.

When you use signals that have a single data type, specify the floating-point library. In the
Configuration Parameters dialog box, on the HDL Code Generation > Global Settings > Floating
Point Target tab, for Library, choose Altera Megafunctions (Altera FP Functions),
Altera Megafunction (ALTFP), Native Floating Point, or Xilinx LogiCORE.

Incremental Vivado Synthesis: Enable IP caching for faster synthesis
of Xilinx Vivado reference designs
When creating a Xilinx Vivado project with the IP Core Generation workflow, you can enable IP
caching to speed up synthesis of the reference design. To accelerate reference design synthesis when
using the workflow for the second time:

1 Before running the Create Project task the first time, select the Enable IP caching check box.
When running this task, the workflow creates an empty IP cache folder.

2 Run the Build FPGA Bitstream task to populate the IP cache folder with synthesis logs and
design checkpoint files generated for the HDL IP core and other IP blocks in the reference
design.

3 To accelerate reference design synthesis, run the Build FPGA Bitstream task a second time.
Make sure that you use the same hdl_prj folder as the first time you ran the workflow.

The Xilinx Vivado tool then checks and reuses the design checkpoint files in the IP cache, which
speeds up reference design synthesis.

If you are using your own custom reference design, you can accelerate reference design synthesis
when running through the workflow the first time.

1 In the IP cache folder, delete the IP core files generated for the DUT. Extract the remaining files
in this folder into a zip file, name it ipcache.zip, and save the file in the reference design
folder.

 IP Core Generation and Hardware Deployment

13-13

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/custom-ip-core-generation.html

2 Make sure that the IPCacheZipFile property of the hdlcoder.ReferenceDesign class
points to the ipcache.zip folder.

In the workflow, HDL Coder uses the files in this IP cache, which speeds up reference design
synthesis. For more information, see IP Caching for Faster Reference Design Synthesis.

IP core generation support for Altera Megafunction
When mapping your floating-point algorithm in Simulink to Altera Megafunction floating-point IP, you
can now generate an HDL IP core with the IP Core Generation workflow. To use this workflow,
map your Simulink model to Altera Megafunctions (Altera FP Functions) or Altera
Megafunctions (ALTFP) floating-point libraries.

To specify the floating-point library, in the Configuration Parameters dialog box, on the HDL Code
Generation > Global Settings > Floating Point Target tab, for Library, choose Altera
Megafunctions (Altera FP Functions) or Altera Megafunctions (ALTFP).

Custom IP repository specification
With the IP Core Generation workflow, by using the addIPRepository method of the
hdlcoder.ReferenceDesign class, you can add your own custom IP repository to your custom
reference design.

Previously, to add IP modules, you used the CustomFiles property of the
hdlcoder.ReferenceDesign class. Starting in R2017a, you can still use the CustomFiles
property, but it is recommended to use the addIPRepository method instead. Using this method,
you can include IP from a shared repository folder, or include multiple repository folders in your
reference design.

See also Define and Add IP Repository to Custom Reference Design.

Xilinx Virtex-2 FPGA board support being removed
HDL Coder no longer supports the Xilinx ISE 10.1 synthesis tool and target platforms that use the
Xilinx Virtex-2 FPGA board. For example, Speedgoat IO314 and older Speedgoat boards use Xilinx
Virtex-2 FPGA, and are no longer supported with the Simulink Real-Time FPGA I/O workflow.

Compatibility Considerations
If you load a pre-R2017a model that was saved with a target platform that used the Xilinx Virtex-2
FPGA, and then open the HDL Workflow Advisor, HDL Coder generates a warning. To avoid this
warning, use a newer FPGA board and synthesis tool. With the Simulink Real-Time FPGA I/O
workflow, use the Speedgoat IO321 or a later Speedgoat board.

Updates to supported software
HDL Coder has been tested with:

• Xilinx Vivado Design Suite 2016.2
• Altera Quartus II 16.0

R2017a

13-14

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/use-ip-caching-for-faster-reference-design-synthesis.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/hdlcoder.referencedesign-class.html
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/define-and-add-ip-respository-to-custom-reference-design.html

See Supported Third-Party Tools and Hardware.

 IP Core Generation and Hardware Deployment

13-15

https://www.mathworks.com/help/releases/R2017a/hdlcoder/gs/language-and-tool-version-support.html

R2016b

Version: 3.9

New Features

Bug Fixes

Compatibility Considerations

14

Model and Architecture Design

Native Floating Point: Generate target-independent synthesizable RTL
from single-precision floating-point models
In R2016b, if you use single-precision data types in your Simulink model, HDL Coder can generate
target-independent HDL code without converting to fixed point. You can deploy the generated code
on any generic ASIC or FPGA platform.

In your Simulink model:

• You can have a combination of integer, fixed-point, and floating-point operations. By using Data
Type Conversion blocks, you can perform conversions between single-precision and fixed-point
data types.

• If your design does not use denormal numbers, you can specify that HDL Coder does not have to
add the additional logic to check for denormal numbers, which improves area on the target
hardware platform.

• By using the latency strategy setting, customize the latency of the native floating-point library.

The generated code:

• Complies with the IEEE-754 standard of floating-point arithmetic.
• Does not require floating-point processing units or hard floating-point DSP blocks on the target

ASIC or FPGA.

When you verify the generated code, use HDL testbench to check for floating-point tolerance based
on relative error or ulp error, and to ensure accuracy of your design with Simulink.

To specify native floating-point support, in the Configuration Parameters dialog box, on the HDL
Code Generation > Global Settings > Floating Point Target tab, for Library, specify NATIVE
FLOATING POINT.

For more information, see Native Floating Point.

HDL Coder support for tunable parameters in data dictionary
Starting with R2016b, you can manage and define tunable parameters in a Simulink data dictionary
for HDL code generation.

To learn more about data dictionary, see What Is a Data Dictionary?.

Generic ports for DUT mask parameters
In R2016b, HDL Coder supports mask parameters at the DUT as generic ports for HDL code
generation.

Simulink diagnostic suppressor option
The Diagnostic Viewer in Simulink now includes an option to suppress certain diagnostics. You can
suppress warnings for specific objects in your model. In the Diagnostic Viewer, click the Suppress

R2016b

14-2

https://www.mathworks.com/help/releases/R2016b/hdlcoder/native-floating-point.html
https://www.mathworks.com/help/releases/R2016b/simulink/ug/what-is-a-data-dictionary.html

button next to the warning to suppress the warning from the specified source. You can restore the
warning from the source by clicking Restore.

You can also control the suppressions from the command line. To view the existing suppressions on
the model, use the Simulink.getSuppressedDiagnostics function.

Suppressed = Simulink.getSuppressedDiagnostics('myModel')

Suppressed =

 SuppressedDiagnostic with properties:

 Source: 'myModel/Data Type Conversion'
 Id: 'SimulinkFixedPoint:util:Saturationoccurred'
 LastModifiedBy: ''
 Comments: ''
 LastModified: '2016-Apr-26 10:31:22'

Suppress diagnostics by using the Simulink.suppressDiagnostic function.
Simulink.suppressDiagnostic('myModel/Data Type Conversion1', ...
 'SimulinkFixedPoint:util:Overflowoccurred')
Suppressed

Suppressed =

 1×2 SuppressedDiagnostic array with properties:

 Source
 Id

 Model and Architecture Design

14-3

 LastModifiedBy
 Comments
 LastModified

Restore a diagnostic by using the Simulink.restoreDiagnostic function.
Simulink.restoreDiagnostic('myModel/Data Type Conversion1', ...
'SimulinkFixedPoint:util:Overflowoccurred')

R2016b

14-4

Block Enhancements

Gigasample Per Second (GSPS) Signal Processing: Increase
throughput of HDL code generated from Discrete FIR Filter and
Integer Delay blocks by using frame input
You can now generate HDL code from the Discrete FIR Filter block when using frame input. Set
Input processing to Columns as channels (frame based). Then, right-click the block and
open HDL Code > HDL Block Properties. Set the Architecture to Frame Based. The block
accepts vector input data, where each element of the vector represents a sample in time. The coder
implements a parallel HDL architecture for the filter. See Discrete FIR Filter.

The Delay block also supports HDL code generation with frame input data. Set Input processing to
Columns as channels (frame based). The block accepts vector input data, where each element
of the vector represents a sample in time.

This capability increases throughput in hardware designs.

Bit-reversed input order for HDL-optimized FFT
For vector input data, the HDL-optimized FFT now supports bit-reversed input with natural order
output. For scalar input data, you can select any input order with any output order. The default is
natural order input with bit-reversed output.

This change affects these blocks and System objects:

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

High-throughput polyphase filter bank for HDL example
The Generate HDL Code for High Throughput Signal Processing example shows how to design a
Polyphase Filter Bank to achieve gigasample per second (GSPS) data rates in the generated HDL
implementation. The model uses the FFT HDL Optimized block with vector input.

HDL support for reset port on Discrete FIR Filter
You can now generate HDL code from the Discrete FIR Filter block when you configure the block to
have an external reset port.

HDL Coder support for array of buses
In your Simulink model, you can now use an array of buses for HDL code generation.

When your Simulink model uses an array of buses, in the generated code, HDL Coder expands the
array of buses into the corresponding scalars. For more information, see Generating HDL Code for
Subsystems with Array of Buses.

 Block Enhancements

14-5

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/examples/generate-hdl-code-for-high-throughput-signal-processing.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/generate-hdl-code-for-subsystems-with-array-of-buses.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/generate-hdl-code-for-subsystems-with-array-of-buses.html

To learn more about array of buses and supported blocks, see Combine Buses into an Array of Buses.

Synchronous behavior for Resettable Subsystem with State Control
block
You can specify synchronous hardware behavior and generate cleaner HDL code for a Resettable
Subsystem with the State Control block. If you specify synchronous hardware behavior, the HDL code
uses fewer hardware resources, because HDL Coder does not generate bypass registers.

The Resettable Synchronous Subsystem block is now available as part of the HDL Subsystems block
library in HDL Coder. The Resettable Synchronous Subsystem block uses the synchronous hardware
behavior of the State Control block with the Resettable Subsystem block.

For an example that shows how to use the Resettable Synchronous Subsystem block, see Resettable
Subsystem Support in HDL Coder™.

HDL optimized Sine and Cosine blocks
In the Lookup Tables block library in HDL Coder, the Sine HDL Optimized and Cosine HDL Optimized
blocks replace the Sine and Cosine blocks respectively. You can still use the Sine and Cosine blocks
from the Lookup Tables block library in Simulink for HDL code generation.

The new blocks are optimized for area and speed because you can configure them with Lookup Tables
that have an exact power of two as its number of elements. In the generated code, the Lookup Tables
precede a register without reset so that they map efficiently to RAM blocks on the target hardware
platform.

Simpler method to call System objects
You can now call a System object with arguments, as if it were a function, instead of using the step
method to perform the operation defined by the object. The step method continues to work. This
capability improves the readability of scripts and functions that use many different System objects.

For example, if you create a hdl.RAM System object named ramsingle, and then call the System
object as a function with that name:

ramsingle = hdl.RAM('RAMType','Single port', ...
 'WriteOutputValue','Old data');
ramsingle(x)

The equivalent operation with the step method is:

ramsingle = hdl.RAM('RAMType','Single port', ...
 'WriteOutputValue','Old data');
step(ramsingle,x)

When the step method has the System object as its only argument, the function equivalent has no
arguments. You must call this function with empty parentheses. For example, step(sysobj) and
sysobj() perform equivalent operations.

R2016b

14-6

https://www.mathworks.com/help/releases/R2016b/simulink/ug/combining-buses-into-an-array-of-buses.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/resettablesynchronoussubsystem.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/examples/resettable-subsystem-support-in-hdl-coder.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/examples/resettable-subsystem-support-in-hdl-coder.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/sinehdloptimized.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/cosinehdloptimized.html

Code Generation and Verification

Logic Analyzer: Visualize, measure, and analyze transitions and states
over time for Simulink signals
If you have DSP System Toolbox, by using the Logic Analyzer visualization tool, you can view the
transitions of signals. Use the Logic Analyzer to:

• Debug and analyze models.
• Trace and correlate many signals simultaneously.
• Detect and analyze timing violations.
• Trace system execution.

HDL Coder support for creating and attaching configuration sets
Starting in R2016b, HDL Coder supports configuration set management workflow on the Model
Explorer, or from the command line. You can create an active configuration set with the preferred
HDL Configuration Parameters on a standard Simulink model, and export and copy this configuration
set for Simulink models that you create.

Previously, you created a configuration set for each Simulink model, and ensured that the
configuration set had similar contents for all your Simulink models.

VHDL Architecture Name available in Configuration Parameters dialog
box
You can now specify the VHDL architecture name in the Configuration Parameters dialog box.

• Commonly Used Parameters tab: HDL Code Generation > Global Settings > General tab.
• All Parameters tab: Search for VHDLArchitectureName.

RAM with generic ports enhancement
Starting in R2016b, when generating code for RAM blocks in your Simulink model, HDL Coder adds
parameters in Verilog and generics in VHDL for the RAM address and data widths. This means that
HDL Coder generates only one generic RAM file for RAM blocks that differ in address widths, data
widths, or both.

Stateflow comments generated as comments in HDL
When your Simulink model contains a Stateflow Chart that uses comments, HDL Coder generates
comments in the HDL code. For example, consider this Moore Stateflow Chart in your Simulink
model.

 Code Generation and Verification

14-7

When you generate Verilog code from the model, HDL Coder displays the comments in the Stateflow
Chart inline beside the corresponding Stateflow object.

R2016b R2016a
 always @(is_AL_Chart) begin
 out0_1 = 8'sb00000000;
 case (is_AL_Chart)
 is_AL_Chart_IN_init :
 begin
 // This is comment 1
 out0_1 = 8'sb00000000;
 end
 default :
 begin
 // This is comment 2
 out0_1 = 8'sb00001010;
 end
 endcase
 end

 always @(is_AL_Chart) begin
 out0_1 = 8'sb00000000;
 case (is_AL_Chart)
 is_AL_Chart_IN_init :
 begin
 out0_1 = 8'sb00000000;
 end
 default :
 begin
 out0_1 = 8'sb00001010;
 end
 endcase
 end

Tolerance check for floating-point libraries
When mapping your Simulink model to floating-point libraries, you can specify the tolerance check
when you generate the testbench.

For operators such as trigonometric sine and cosine, there can be small rounding errors or numeric
differences with the correct rounding range of values that the IEEE-754 standard specifies. To check
for numerical accuracy in the generated testbench by using HDL testbench, specify the floating-point
tolerance check.

You can perform the floating-point tolerance check based on the relative error or ulp error.

R2016b

14-8

• relative error: Relative error is the rounding error when approximating a nonzero real
number. By default, the tolerance value is 1e-07. You can specify a tolerance value less than or
equal to 1e-07.

• ulp error: ulp (unit in the last place) is the gap between two floating-point numbers nearest x,
even if x is one of the numbers. By default, the tolerance value is zero. You can specify a tolerance
value greater than or equal to zero.

To check for floating-point tolerance, in the Configuration Parameters dialog box, on the
Configuration section of HDL Code Generation > Test Bench tab, for Floating point tolerance
check based on, specify relative error or ulp error, and enter the Tolerance Value.

For more information, see FPToleranceValue and FPToleranceStrategy.

Code Generation Report enhancements
Delay Balancing Report

HDL Coder now displays the path delay balancing information in the Delay Balancing section of the
Optimization Report. Previously, the Optimization Report displayed the delay balancing information in
the Path Delay Summary subsection of the Streaming and Sharing report.

See also Optimization Report.

Shift Operators in Resource Report

The High-level Resource Report Summary shows the number of Static Shift operators and Dynamic
Shift operators. The Detailed Report shows the number of static left shift, static right shift, dynamic
left shift, and dynamic right shift operators.

Comprehensive documentation for HDL coding standard rules
The HDL Coder documentation provides a comprehensive list of coding standard rules with
recommendations for each of the rules. The coding standard rules fall under three categories:

• Basic Coding Practices: Checks for conformance of modeling constructs with general naming
conventions and basic coding guidelines. See Basic Coding Practices.

• RTL Description Techniques: Checks for conformance with RTL description rules and guidelines.
See RTL Description Techniques.

• RTL Design Methodology Guidelines: Includes guidelines for creating and using function libraries,
and test facilitation design. See RTL Design Methodology Guidelines.

To learn more about HDL coding standards, see HDL Coding Standards and HDL Coding Standard
Report.

More discoverable logs and reports for fixed-point conversion in HDL
Coder app
Previously, in the HDL Workflow Advisor Fixed-Point Conversion task, the HDL Coder app
displayed logs and report links for range analysis, fixed-point conversion, and verification on separate
tabs that were placed on top of each other. To see a hidden tab, you opened a menu and selected the
tab.

 Code Generation and Verification

14-9

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/fptolerancevalue.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/fptolerancestrategy.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/optimization-report.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/basic-coding-practices.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/rtl-description-techniques.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/rtl-design-methodology-guidelines.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-coding-standards.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-coding-standard-report.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-coding-standard-report.html

In R2016b, the app displays logs and report links for range analysis and fixed-point conversion on the
Output tab. It displays logs and report links for verification on the Verification Output tab. These
tabs are next to each other so that you can more easily find them.

Enhancements in generated model for Lookup Tables
In R2016b, you can flatten masked subsystems and library blocks that contain Lookup Tables to
enable further optimizations and file reduction.

Target and Optimizations pane in HDL Coder Configuration Parameters
In the Configuration Parameters dialog box, on the HDL Code Generation pane, HDL Coder has a
new Target and Optimizations pane where you can specify the target device and optimization
settings.

• Parameters that were previously in the General, Pipelining, and Resource Sharing sections of
the Optimization tab of Global Settings pane have moved to a General tab, a Pipelining tab,
and a Resource Sharing tab respectively in the Optimizations section of Target and
Optimizations pane.

• In the Target and Optimizations pane, you now specify the target device settings in the Tool
and Device section and the Target Frequency in the Objectives section respectively.

For more information, see HDL Code Generation Pane: Target and Optimizations.

R2016b

14-10

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-code-generation-pane-target-and-optimizations.html

Link to Code Generation Report after HDL code generation
In the Configuration Parameters dialog box, on the HDL Code Generation pane, when you select
Generate resource utilization report and generate HDL code, HDL Coder displays a link to the
Code Generation report. If you happen to close the report after code generation, you can click the
link to open the report from the MATLAB Command Window.

 Code Generation and Verification

14-11

Speed and Area Optimizations

Adaptive Pipelining: Specify synthesis tool and target clock frequency
for automatic pipeline insertion and balancing
You can now specify adaptive pipelining for your Simulink model, or for an individual subsystem in
your Simulink model, to improve area and timing on the target FPGA device. To insert adaptive
pipelines, specify the synthesis tool and the target frequency. HDL Coder inserts the required number
of pipelines for potential area and timing improvements for these blocks:

• Lookup Table
• Product, Gain, and Multiply-Add
• Rate Transition and Downsample

You can enable adaptive pipelining by using the AdaptivePipelining property from the command
line, or by using the AdaptivePipelining HDL block property for the Subsystem. See also Adaptive
Pipelining.

HDL Coder displays a report that shows the adaptive pipelining status and whether HDL Coder
successfully inserted pipeline registers. For more information, see Optimization Report.

Clock-rate pipelining enhancements
Subsystem level control of clock-rate pipelining

You can now specify clock-rate pipelining for individual subsystems in your Simulink model. With this
optimization, you can selectively apply clock-rate pipelining to subsystems in your model design that
are on the critical path, and improve timing.

To disable clock-rate pipelining for an individual subsystem, in HDL Block Properties for the
subsystem, set ClockRatePipelining to off.

To learn more about the HDL block property, see ClockRatePipelining.

Optimization of Downsample block with nonzero offset

In R2016b, when you have a Downsample block with a nonzero Sample offset at the boundary of a
clock-rate pipelining region, HDL Coder does not introduce the additional latency or generate a Rate
Transition block. This optimization improves timing and area.

For more information, see Clock-Rate Pipelining.

Resource sharing enhancements
Sharing of multipliers with different word-lengths

HDL Coder now shares Product blocks and Gain blocks in your Simulink model that have different
word-lengths. This optimization shares more multipliers, which saves area on the target platform.

To share multipliers that have different word-lengths, in the Configuration Parameters dialog box, on
the HDL Code Generation > Target and Optimizations > Resource Sharing tab, specify the

R2016b

14-12

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/adaptivepipelining.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/adaptive-pipelining.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/adaptive-pipelining.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/optimization-report.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/block-implementation-parameters.html#bveex_4-1
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/clock-rate-pipelining.html

Multiplier promotion threshold. The Multiplier promotion threshold is the maximum word-
length by which HDL Coder promotes a multiplier for sharing with other multipliers.

Previously, for successful resource sharing, you used Product blocks or Gain blocks with the same
word-length.

See also MultiplierPromotionThreshold and Resource Sharing.

Sharing of floating-point IP

HDL Coder now shares floating-point IP blocks in the target hardware based on the SharingFactor
that you specify. This optimization saves area on the target hardware by sharing more floating-point
IP blocks.

If you do not want to share floating-point IP blocks, in the Configuration Parameters dialog box, on
the Resource Sharing tab, clear Floating-point IPs.

See also ShareFloatingPointIP.

Delay balancing failures reported as errors
Starting in R2016b, if delay balancing is unsuccessful, HDL Coder generates an error. To see the
block or subsystem in your Simulink model that caused delay balancing to fail, in the Delay
Balancing section of the Optimization report, click the link to that block or subsystem.

Compatibility Considerations
Previously, HDL Coder reported delay balancing failures as warnings. Now, if you load a pre-R2016b
model for which delay balancing was unsuccessful, HDL Coder generates an error.

To learn more about possible reasons for delay balancing to fail, see Delay Balancing.

Optimization of Delay blocks with nonzero initial condition
In the generated code, HDL Coder now replaces a Delay block that has nonzero initial condition in
your Simulink model with a Delay block that has zero initial condition and some additional logic. With
this replacement, optimizations such as sharing, distributed pipelining, and clock-rate pipelining can
work more effectively, and prevent an assertion from being triggered in the validation model.

To disable this optimization, in the Configuration Parameters dialog box, on the HDL Code
Generation > Target and Optimizations > General tab, clear Transform non zero initial value
delay.

For more information, see TransformNonZeroInitDelay.

Initialization script specification for Delay blocks without reset
Starting with R2016b, to initialize the registers, you can use the no-reset registers initialization
setting to specify Generate an external script, Do not initialize, or Generate
initialization inside module. When you select Generate initialization inside
module, in Verilog, HDL Coder initializes the registers by using an initial block in each module. In
VHDL, HDL Coder initializes the registers as part of the signal declaration statements.

 Speed and Area Optimizations

14-13

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/multiplierpromotionthreshold.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/resource-sharing.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/sharefloatingpointip.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/delay-balancing.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/transformnonzeroinitdelay.html

Previously, if you had Delay blocks in your Simulink model with ResetType set to None, HDL Coder
generated an external script to initialize the Delay blocks for ModelSim simulation.

The no-reset registers initialization setting is available in the Configuration Parameters dialog
box, on the HDL Code Generation > Global Settings > Coding style tab.

To learn more, see NoResetInitializationMode.

R2016b

14-14

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/noresetinitializationmode.html

IP Core Generation and Hardware Deployment

AXI4-Stream Video Interface: Generate HDL code with the AXI4-
Stream Video interface by using the IP core generation workflow
In R2016b, when your synthesis tool is Xilinx Vivado, HDL Coder can generate an IP core with an
AXI4-Stream Video interface for your video algorithm. To generate an IP core, model your video
algorithm by using the streaming pixel protocol. Then, in the Target platform interface table map
the pixel data and pixel control bus ports to the AXI4-Stream Video Master or AXI4-Stream
Video Slave interfaces.

You can integrate the generated IP core into the Default video system reference design or your
own custom video reference design.

For more information, see Model Design for AXI4-Stream Video Interface Generation.

Customizable FPGA floating-point target configuration
You can customize the floating-point target IP settings by using the floating-point target configuration
that you specify for the library. When you customize the IP settings, you can choose from different
combinations of IP names and data types, and specify the latency or the target frequency that you
want the IP to achieve. You can customize the IP settings from:

• Floating Point Target tab in Configuration Parameters dialog box: When you specify an Altera or
Xilinx FPGA floating-point library, specify your custom settings in the IP Settings section.

• Command-line interface: By using the hdlcoder.createFloatingPointTargetConfig class,
you can create a floating-point target configuration object for a given FPGA floating-point library
or the HDL Coder native floating-point. In the IPConfig property of this object, use the
customize function to customize the IP settings.

For more information, see Customize Floating-Point IP Configuration.

Additional block support for FPGA floating-point target library
mapping
For FPGA floating-point target library mapping, HDL Coder supports these Simulink blocks and block
modes:

• MinMax block.
• Unary Minus block.
• Add block with - ports.

See also HDL Coder Support for FPGA Floating-Point Library Mapping.

Default video system reference design
You can use a new Default video system (requires HDMI FMC module) reference design
with these target platforms:

 IP Core Generation and Hardware Deployment

14-15

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/model-design-for-axi4-stream-video-interface-generation.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/customizing-floating-point-ip-configuration.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/minmax.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/unaryminus.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/add.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/hdl-coder-support-for-fpga-floating-point-library-mapping.html

• Xilinx Zynq ZC702 evaluation kit
• Xilinx Zynq ZC706 evaluation kit
• ZedBoard

You must have Embedded Coder and the Computer Vision System Toolbox™ Support Package for
Xilinx Zynq-Based Hardware.

Custom reference design enhancements
For your custom reference design, by using the hdlcoder.ReferenceDesign class, specify your
own custom parameters and custom callback functions. Therefore, you can customize the settings
that HDL Coder uses to create the project, generate the software interface model, and build the
FPGA bitstream.

The IP Core Generation workflow has these enhancements:

• The Set Target Interface task is split into two tasks. One task is the original Set Target
Interface, and the other task is a new Set Target Reference Design. In the Set Target
Reference Design task, you can specify the parameters and supported tool version for the target
reference design.

The reference design setting has moved from the Set Target Interface task to the Set Target
Reference Design task.

• The new task Set Target Frequency means that you can specify the Target Frequency (MHz)
for your design.

To learn more, see Define Custom Parameters and Callback Functions for Custom Reference Design
and hdlcoder.ReferenceDesign.

Compatibility Considerations
In the Generate Software Interface Model task, the Add IP core device driver check box has
been removed. To add the device driver, in the task Program Target Device, specify a new
Download Programming method. The Download Programming method copies the generated
FPGA bistream, device tree, and system initialization scripts to the SD card on the Zynq board, and
keeps the bitstream on the SD card persistently.

The reference design names no longer contain a tool version number. If you load a pre-R2016b model
that was saved with a reference design containing a version number in its name, and then open the
HDL Workflow Advisor, HDL Coder generates a warning. To avoid this warning, select the reference
design that does not have the tool version number, and save the model.

IP Core Generation workflow for Xilinx and Altera FPGA devices
You can use the IP Core Generation workflow to generate an HDL IP core for any supported
Xilinx or Altera FPGA device. You can integrate the generated IP core into the Default system
reference design, or create a custom board and reference design definition for your own FPGA board.

• With a new task Set Target Frequency, you can specify the Target Frequency (MHz) for your
design.

• If the target device does not have an embedded ARM processor, there is no longer the Generate
Software Interface Model task.

R2016b

14-16

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/define-custom-reference-design-with-custom-parameters-and-callback-functions.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/hdlcoder.referencedesign-class.html

To learn more, see IP Core Generation Workflow for Standalone FPGA Devices.

Additional FPGA board support for IP Core Generation workflow
You can target the following FPGA boards for the IP core generation workflow:

• Xilinx Kintex-7 KC705 development board
• Arrow DECA MAX 10 FPGA evaluation kit

For examples that show how to target the FPGA boards, see Using IP Core Generation Workflow with
Xilinx FPGA Boards: Xilinx Kintex-7 KC705.

Target clock frequency specification
By using the Target Frequency (MHz) setting in the Target and Optimizations pane in the
Configuration Parameters dialog box, you can specify the target frequency for:

• FPGA floating-point target library mapping: Specify the target frequency that you want the IP to
achieve when you use ALTERA MEGAFUNCTION (ALTERA FP FUNCTIONS).

• Adaptive pipelining: Specify the target frequency for HDL Coder to insert required number of
pipelines to improve area and timing on the target platform.

Previously, you specified the target frequency for floating-point library mapping in the Configuration
Parameters dialog box, on the HDL Code Generation > Global Settings > Floating Point Target
tab.

By using the new Set Target Frequency task in the HDL Workflow Advisor, you can now specify the
target frequency for the following workflows:

• Generic ASIC/FPGA
• IP Core Generation

From the command line, use the TargetFrequency property to save the target frequency on the
model.

Simulink Real-Time FPGA I/O workflow support for Xilinx Vivado
For the new Speedgoat boards, the Simulink Real-Time FPGA I/O workflow supports Xilinx
Vivado by using the IP Core Generation workflow.

See also IP Core Generation Workflow for Speedgoat Boards.

Speedgoat IO333–325K target hardware support
You can target the Speedgoat IO333–325K board with Xilinx Kintex7 for the Simulink Real-
Time FPGA I/O workflow.

Updates to supported software
HDL Coder has been tested with:

 IP Core Generation and Hardware Deployment

14-17

https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/using-ip-core-generation-workflow-with-standalone-fpga-devices.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/examples/using-ip-core-generation-workflow-with-xilinx-fpga-boards-xilinx-kintex-7-kc705.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/examples/using-ip-core-generation-workflow-with-xilinx-fpga-boards-xilinx-kintex-7-kc705.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/targetfrequency.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/using-ip-core-generation-workflow-for-speedgoat-boards.html

• Xilinx Vivado Design Suite 2015.4
• Altera Quartus II 15.1

For a list of supported third-party tools and hardware, see Supported Third-Party Tools and
Hardware.

R2016b

14-18

https://www.mathworks.com/help/releases/R2016b/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/gs/language-and-tool-version-support.html

R2016a

Version: 3.8

New Features

Bug Fixes

Compatibility Considerations

15

Model and Architecture Design

Gigasample per Second (GSPS) Signal Processing: Increase
throughput of HDL-optimized FFT and IFFT algorithms using frame
input
You can increase the throughput of the FFT and IFFT calculation by using vector input and output
ports. The internal algorithm computes the FFT or IFFT of each vector element in parallel.

The FFT implementation is now a Radix 2^2 architecture which improves performance for vector
input. The table compares hardware implementation resources between the old Radix 2 architecture
and the new Radix 2^2 architecture.

Architecture Multipliers Adders Memory Control Logic For
Vector Input

Radix 2 Hybrid log4(N-1)) 3×log4(N) 17N/16 – 1 Complicated
Radix 2^2 (SDF) log4(N-1) 4×log4(N) N – 1 Simple

This change affects these blocks and System objects:

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

Tunable and nontunable parameter enhancements
You can generate HDL code for:

• Stateflow Charts, State Transition Tables, or Truth Tables that use a tunable parameter.
• MATLAB Function blocks that use a tunable or nontunable parameter with vector, array, struct,

enumeration, or complex data type.
• MATLAB System blocks containing a System object with tunable properties.

See Generate DUT Ports for Tunable Parameters.

Reusable HDL code enhancements for subsystems with tunable mask
parameters
In R2016a, to generate one reusable HDL file for Subsystem blocks that contain Gain and Constant
blocks for different values of tunable mask parameters, set the MaskParameterAsGeneric option.

Previously, in addition to setting the MaskParameterAsGeneric option, you used Atomic Subsystem
blocks and selected the tunable attribute in the Mask Editor Parameters & Dialog tab for the
Atomic Subsystem block.

See MaskParameterAsGeneric.

R2016a

15-2

https://www.mathworks.com/help/releases/R2016a/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/generate-code-for-tunable-parameters.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/maskparameterasgeneric.html

HDL Coder support for nondirect feedthrough setting in MATLAB
Function blocks
HDL Coder now supports code generation from MATLAB Function blocks that use the nondirect
feedthrough setting. With nondirect feedthrough, you can use MATLAB Function blocks in a feedback
loop and prevent algebraic loops.

By default, MATLAB Function blocks have direct feedthrough enabled. To disable it, in the Ports and
Data Manager pane, clear the Allow direct feedthrough check box.

Nondirect feedthrough enables semantics to ensure that outputs rely only on current state. For
additional information, see Use Nondirect Feedthrough in a MATLAB Function Block.

 Model and Architecture Design

15-3

https://www.mathworks.com/help/releases/R2016a/simulink/ug/use-nondirect-feedthrough-in-a-matlab-function-block.html

Block Enhancements

Synchronous Subsystem Toggle: Specify enable and reset behavior for
cleaner HDL code by using State Control block
With the State Control block, you can toggle a subsystem between the default Simulink reset and
enable behavior and the synchronous hardware reset and enable behavior. How you set the State
Control block affects blocks within the subsystem that have state and have reset or enable ports.

If you specify synchronous hardware behavior, the HDL code is cleaner and requires fewer resources
because HDL Coder does not generate bypass registers for enabled subsystems or multiplexers for
blocks with reset ports.

To toggle a subsystem between synchronous hardware behavior and default Simulink behavior, add a
State Control block to the subsystem:

• For synchronous hardware behavior, in the State Control block, set State control to
Synchronous.

• For default Simulink behavior, in the State Control block, set State control to Classic.

The State Control, Enabled Synchronous Subsystem, and Synchronous Subsystem blocks are
available as part of the HDL Subsystems block library in HDL Coder. The Synchronous Subsystem
and Enabled Synchronous Subsystem blocks use the synchronous hardware behavior of the State
Control block with the Subsystem and Enabled Subsystem blocks respectively.

R2016a

15-4

Use the State Control block with Simulink, DSP System Toolbox, Communications Toolbox™, or Vision
HDL Toolbox blocks that support HDL code generation.

For more information, see State Control and Synchronous Subsystem Behavior with the State Control
Block.

Region-of-interest selection and grayscale morphology
Vision HDL Toolbox introduces a new block, ROI Selector, that selects a region of interest (ROI) from
a video stream. You can specify one or more regions by using input ports or mask parameters. The
block returns each new region as streaming pixel data and a corresponding pixelcontrol bus.

The visionhdl.ROISelector System object provides equivalent MATLAB functionality.

Vision HDL Toolbox includes new blocks and System objects that perform morphology operations on
grayscale input data.

Block System object
Grayscale Closing visionhdl.GrayscaleClosing
Grayscale Dilation visionhdl.GrayscaleDilation
Grayscale Erosion visionhdl.GrayscaleErosion
Grayscale Opening visionhdl.GrayscaleOpening

These blocks and System objects support HDL code generation.

Nested bus support enhancements
In R2016a, HDL Coder supports all nested virtual and nonvirtual buses. For example, you can now
generate HDL code for a Delay block with a nested virtual bus signal input in your Simulink model.

Block support enhancements
You can generate HDL code for:

• A Bus to Vector block.
• A Dot Product block with Tree architecture when input signals are a mix of row and column

vectors.
• A Shift Arithmetic block when Bits to shift: Number is a vector of bit shift values or Bits to

shift: Source is Input port.
• Masked Inport and Outport blocks.
• A Matrix Concatenate block with Multidimensional array mode.
• A Bus Assignment block with bus signal input containing a nested bus signal.
• A MATLAB System block containing a user-defined System object with bus inputs or outputs.
• An n-D Lookup Table block with the Breakpoints specification parameter or a Prelookup

block with the Specification parameter set to Explicit values or Even spacing.
• A Subsystem block with BlackBox architecture and a cell array variable in the GenericList field

as input to the Subsystem block.

 Block Enhancements

15-5

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/statecontrol.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/generate-hdl-code-using-state-control-block.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/generate-hdl-code-using-state-control-block.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/roiselector.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.roiselector-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleclosing.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleclosing-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaledilation.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaledilation-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleerosion.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleerosion-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleopening.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleopening-class.html

Code Generation and Verification

Faster Test Bench Generation and HDL Simulation: Generate
SystemVerilog DPI test benches for large data sets with HDL Verifier
Reduce test bench generation and simulation time, especially when using large data sets. When you
call the makehdltb function, set the GenerateSVDPITestBench property. The coder generates a
DPI component for your entire Simulink model, including your DUT and data sources. Your entire
model must support C code generation with Simulink Coder™. The coder generates a SystemVerilog
test bench that compares the output of the DPI component with the output of the HDL
implementation of your DUT. The tool also generates a build script for your simulator. You can specify
'ModelSim', 'VCS', or 'Incisive'.

makehdltb(gcb,'GenerateSVDPITestBench','ModelSim','GenerateHDLTestbench','off')

You must have an HDL Verifier license and a Simulink Coder license to use this feature.

Code Generation Report enhancements
The Code Generation Report has these enhancements:

• A new Code Interface Report shows the DUT input and output port names, data types, and bit
widths.

• The High-level Resource Report shows the number of 1-bit registers and I/O bits. It includes
resource usage for model references.

See Code Interface Report and High-level Resource Report in Resource Utilization Report.
• For each group of streamed or shared blocks, the Sharing and Streaming report provides more

details:

• For shared blocks, the report shows the resource type, block word length, number of blocks in
the group, and a traceability link to the blocks in the original model and generated model. It
includes a Highlight shared resources and diagnostics link to highlight in the
original model and generated model the shared blocks and blocks that are barriers to resource
sharing.

• For streamed blocks, the report links to the group of streamed blocks and shows the streaming
factor. It includes a Highlight streaming groups and diagnostics link to highlight in
the original model and generated model the streamed blocks and blocks that are barriers to
streaming.

See Streaming and Sharing Report in Optimization Report.

Changes to Fixed-Point Conversion Code Coverage
If you use the HDL Coder app to convert your MATLAB code to fixed-point code and propose types
based on simulation ranges, the app shows code coverage results. In previous releases, the app
showed the coverage as a percentage. In R2016a, the app shows the coverage as a line execution
count.

R2016a

15-6

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/makehdltb.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/resource-utilization-report.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/optimization-report.html

See Code Coverage in Automated Fixed-Point Conversion.

Fixed-point conversion requires the Fixed-Point Designer software.

Progress indicator for HDL test bench generation
HDL Coder displays a series of dots to show progress during HDL test bench generation for test
benches with a long simulation time.

HDL test bench generation simulates the Simulink model to collect data for every signal in the DUT.
This data collection phase can therefore significantly impact HDL test bench generation time. The
progress indicator dots help as visual indicators during this long phase of testbench generation.

Test bench generation with updated model stop time
If you generate a test bench, update the stop time in your model, and regenerate the test bench. The
generated test bench uses the updated stop time.

 Code Generation and Verification

15-7

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/fixed-point-conversion.html#bt1s0y3
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/fixed-point-conversion.html

Previously, test bench generation used the original stop time even if the stop time was updated.

Performance improvement for MATLAB to HDL test bench generation
In the MATLAB to HDL workflow, HDL Coder uses MEX code for data logging to speed up HDL test
bench generation.

Coding standard check for length of control flow statements in a
process block
When you enable the Industry coding standard, HDL Coder checks for the length of control flow
statements, such as if-else, case and loops, which are described separately within a process block (for
VHDL code) or an always block (for Verilog code). If the length of control flow statements in your
design exceeds the specified limit, the coder displays an error in the HDL coding standard report.

See HDL Coding Standard Rules.

Warnings for non-ASCII characters in generated HDL code
If you have non-ASCII content in model annotations and Model Info blocks, HDL Coder issues
warnings during checkhdl and makehdl. Non-ASCII characters in the generated HDL code can
cause RTL simulation and synthesis tools to fail to compile the code.

Japanese translation for resource report
For Japanese versions of HDL Coder, the resource utilization report is in Japanese.

R2016a

15-8

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/hdl-coding-standard-rules.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/resource-utilization-report.html

Speed and Area Optimizations

Resource Sharing Enhancements: Share multipliers and gain
operations that have different data types
HDL Coder can now share multiply and gain blocks that have the same word length but different
fraction lengths and different signs. This optimization reduces the resource utilization by sharing
more multipliers and gain operations.

Previously, the word length, fraction length, and signs of the multiply or gain blocks had to be the
same.

See Requirements and Limitations for Resource Sharing in Resource Sharing.

Biquad Filter block participates in subsystem HDL optimizations
The Biquad Filter block is now included in subsystem optimizations for speed and area of the
generated HDL. To specify resource sharing, streaming, and pipeline options, right-click the
subsystem containing the Biquad Filter block and open the HDL Code > HDL Properties dialog box.
To use these optimizations you must set the Architecture of the Biquad Filter block to Fully
parallel.

The optimizations work the same way as the optimizations for the Discrete FIR Filter block. You can
share resources between Biquad Filter and Discrete FIR Filter blocks in the same subsystem.

More functions for Multiply-Add block to map to DSP
You can now choose from three different functions for the Multiply-Add block to map to the DSP
blocks in Altera and Xilinx FPGA libraries. The three functions are c+(a.*b), c-(a.*b), and
(a.*b)-c.

For details, see Multiply-Add.

Generation of Multiply-Add blocks for complex multiply operations
If you have Product or Gain blocks with complex input signals in your Simulink model, HDL Coder
generates a model with Multiply-Add blocks. These Multiply-Add blocks map efficiently to the DSP
blocks in Altera and Xilinx FPGA libraries.

RAM mapping for pipeline and floating-point delays
To optimize for area by mapping pipeline registers to RAM, in the Configuration Parameters dialog
box, select the Map pipeline delays to RAM check box from the HDL Code Generation > Global
Settings > Optimization tab. See MapPipelineDelaysToRAM.

HDL Coder also maps design delays and the pipeline registers in floating-point type to RAM.

 Speed and Area Optimizations

15-9

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/resource-sharing.html#btg_5ht-1
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/resource-sharing.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/multiplyadd.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/mappipelinedelaystoram.html

Initialization script generated for Delay blocks without reset for
ModelSim simulation
If you have delay blocks with in your model with ResetType set to None, HDL Coder generates a
script to initialize these delay blocks for simulation with ModelSim.

Previously, you either modified the generated code or wrote your own script to initialize these delay
blocks.

R2016a

15-10

IP Core Generation and Hardware Deployment

Hard Floating-Point IP Targeting: Generate HDL to map to Altera Arria
10 floating-point units at user-specified target frequency
HDL Coder can now map your Simulink model to Altera floating-point IP (ALTERA FP FUNCTIONS)
at the target frequency that you specify.

Previously, when mapping to Altera megafunction IP (ALTFP) or Xilinx LogiCORE® IP, you could
specify only whether to optimize the Simulink model for minimum or maximum latency and for speed
or area.

For more information, see FPGA Floating-Point Library Mapping and TargetFrequency.

Compatibility Considerations
Previously, you chose the floating-point target library by selecting the Set Target Library (for
floating-point synthesis support) check box from the HDL Workflow Advisor.

You now specify the floating-point target library from the HDL Code Generation > Global Settings
> Floating Point Target tab in the Model Configuration Parameters dialog box.

End-to-end scripting for Simulink Real-Time FPGA I/O workflow
You can use the HDL Workflow Command Line Interface (CLI) to script the entire Simulink Real-Time
FPGA I/O workflow.

To create the script to configure your design using the HDL Workflow Advisor, generate a target
hardware bitstream or project from your Simulink model, and then export a script. Run the exported
script, which contains HDL Workflow CLI commands, to replicate your HDL Workflow Advisor
settings and generate the same target hardware bitstream or project.

SoC device programmed by using Ethernet connection
When using the IP core generation workflow in the HDL Workflow Advisor, you can program the
target SoC device by using an Ethernet connection.

You must have Embedded Coder and the Embedded Coder Support Package for Intel SoC Devices.

Custom programming method for IP Core Generation workflow
Using the CallBackCustomProgrammingMethod method of the hdlcoder.ReferenceDesign
class, you can define your own function to program the target device in your custom reference
design.

Interface connection name and type for custom reference designs
Using the AXI4SlaveInterface method of the hdlcoder.ReferenceDesign class, you can
specify the type of an AXI4 slave interface in a custom reference design. The type can be AXI4, or
AXI4-Lite. You can also name the interface.

 IP Core Generation and Hardware Deployment

15-11

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/map-to-an-fpga-floating-point-library.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/targetfrequency.html

Updates to supported software
HDL Coder has been tested with:

• Xilinx Vivado Design Suite 2015.2
• Altera Quartus II 15.0

For a list of supported, third-party tools and hardware, see Supported Third-Party Tools and
Hardware.

Automatic generation of FPGA top-level wrapper based on workflow
For the FPGA Turnkey and Simulink Real-Time FPGA I/O workflows, HDL Coder generates a top-level
HDL code wrapper and a constraint file that contains pin mapping and clock constraints. In the HDL
Workflow Advisor, for the FPGA Turnkey and Simulink Real-Time FPGA I/O workflows, the name of
the Generate RTL Code and Testbench task is now Generate RTL Code.

To run the Annotate Model with Synthesis Result task, your target workflow must be Generic
ASIC/FPGA.

Compatibility Considerations
For all workflows, the Generate FPGA top level wrapper check box and
GenerateTopLevelWrapper of the hdlcoder.WorkflowConfig class have been removed.

For the Generic ASIC/FPGA workflow, if you specify the GenerateTopLevelWrapper property of the
hdlcoder.WorkflowConfig, HDL Coder displays a warning. In a future release, specifying this
property will result in an error.

For the FPGA Turnkey or Simulink Real-Time FPGA I/O workflow, if you specify the following
hdlcoder.WorkflowConfig properties, HDL Coder displays a warning. In a future release,
specifying these properties will result in an error:

• RunTaskGenerateRTLCodeAndTestbench
• RunTaskVerifyWithHDLCosimulation
• RunTaskAnnotateModelWithSynthesisResult
• GenerateRTLTestbench
• GenerateCosimulationModel
• CosimulationModelForUseWith
• GenerateValidationModel
• GenerateTopLevelWrapper
• CriticalPathSource
• CriticalPathNumber
• ShowAllPaths
• ShowDelayData
• ShowUniquePaths
• ShowEndsOnly

R2016a

15-12

https://www.mathworks.com/help/releases/R2016a/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/gs/language-and-tool-version-support.html

R2015aSP1

Version: 3.6.1

Bug Fixes

16

R2015b

Version: 3.7

New Features

Bug Fixes

Compatibility Considerations

17

Model and Architecture Design

Model Arguments: Parameterize instances of model reference blocks
You can generate VHDL generic or Verilog parameter syntax for model arguments you use in a
masked or unmasked Model block. In the model, you can use the model arguments in Gain or
Constant blocks.

For details, see Generate Parameterized Code for Referenced Models.

Integration with Xilinx Vivado System Generator for DSP blocks
You can generate code for subsystems containing Xilinx System Generator for DSP blocks when Xilinx
Vivado is your synthesis tool. For setup information, see Xilinx System Generator Setup for ModelSim
Simulation.

struct input and output for top-level MATLAB design function
You can generate HDL code for a top-level MATLAB design function that has struct inputs or
outputs. You can also generate HDL code for a test bench that uses struct data. Previously, struct
data was supported within the design, but not at the top-level inputs or outputs.

For example, in Vision HDL Toolbox, this removes the requirement to flatten the pixelcontrol
structure into the component signals, as shown here.

function [pixOut,hStartOut,hEndOut,vStartOut,vEndOut,validOut] = ...
 HDLTargetedDesign(pixIn,hStartIn,hEndIn,vStartIn,vEndIn,validIn)

With HDL code generation support for structures, the arguments can now include the control signal
structure.

function [pixOut,ctrlOut] = HDLTargetedDesign(pixIn,ctrlIn)

The structure is flattened to the individual control signals in the generated Verilog or VHDL code.

Tunable parameters in MATLAB Function block
When you generate code for a MATLAB Function block that uses a tunable parameter, the coder
creates a top-level DUT port for the tunable parameter in the generated code.

For details, see Generate DUT Ports for Tunable Parameters.

Output initialization requirement for Stateflow Moore Charts
If you have a model with a Stateflow Moore Chart, select the Initialize Outputs Every Time Chart
Wakes Up chart property. By selecting this property, HDL Coder prevents latching of outputs,
generates more readable HDL code, and provides better synthesis results.

R2015b

17-2

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/generate-parameterized-code-for-model-reference.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/gs/toolbox-setup.html#bt3f39k-1
https://www.mathworks.com/help/releases/R2015b/hdlcoder/gs/toolbox-setup.html#bt3f39k-1
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/generate-code-for-tunable-parameters.html

Compatibility Considerations
In previous versions, you did not have to set the chart property. Starting in R2015b, If you do not
select the Initialize Outputs Every Time Chart Wakes Up check box, HDL Coder generates an
error.

Enforce ASCII character requirement for model property values
For HDL model properties that require ASCII character strings, HDL Coder now generates an error if
you assign a non-ASCII string value.

The following model properties accept non-ASCII character strings:

• BlocksWithNoCharacterizationFile
• CriticalPathEstimationFile
• DateComment
• DistributedPipeliningBarriersFile
• HighlightFeedbackLoopsFile
• SimulationLibPath
• SynthesisProjectAdditionalFiles
• TargetDirectory

Compatibility Considerations
Previously, HDL Coder did not generate an error if you assigned a non-ASCII character string to a
model property that required ASCII characters.

To fix the error, at the command prompt, enter: hdlset_param (gcs, model_property_name,
'ASCII_value').

 Model and Architecture Design

17-3

Block Enhancements

Expanded Bus Support: Generate HDL for enabled or triggered
subsystems with bus inputs and for black boxes with bus I/O
You can now generate HDL code for the following blocks with bus input or output signals:

• Enabled Subsystem
• Triggered Subsystem
• Subsystem with black box implementation

Library Browser view shows blocks supported for HDL code
generation
In the Library Browser, you can enable a filtered view that shows all the blocks that are compatible
with HDL code generation. The view shows only those blocks for which you have a license. To use this
filtered view, at the command prompt, enter hdllib.

After using the hdllib command, if you close and reopen the Library browser, the view that shows
only those blocks that are compatible for HDL code generation persists. To display all blocks in the
Library Browser, enter hdllib('off').

For more information, see Show Blocks Supported for HDL Code Generation.

Compatibility Considerations
Previously, the hdllib command created a supported blocks library called hdlsupported. The
hdllib command now opens the Library Browser with a view that shows the supported blocks for
HDL code generation, but does not create a block library.

To create the supported blocks library, at the command prompt, enter hdllib('librarymodel').

Trigonometric Function block with sin or cos function can have vector
inputs
You can generate code for a Trigonometric Function block with vector inputs when the Function is
sin, cos, cos + jsin, or sincos, and the Approximation method is CORDIC.

In the HDL Block Properties dialog box, you can also set UsePipelinedKernel to Off for zero-
latency combinatorial HDL code. To avoid delay balancing errors, you can set UsePipelinedKernel
to Off if the block is in a feedback loop.

See Trigonometric Function.

Discrete FIR Filter supports HDL optimizations
You can now optimize speed and area of the generated HDL for the Discrete FIR Filter block. Right-
click the subsystem containing the Discrete FIR Filter block, and open the HDL Code > HDL
Properties dialog to specify resource sharing, streaming, and pipeline options. You can use these

R2015b

17-4

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/show-blocks-supported-for-hdl-code-generation.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ref/trigonometricfunction.html

optimizations when the Architecture is Fully parallel. This feature requires an HDL Coder
license. See Reduce Critical Path with Distributed Pipelining, Resource Sharing of Multipliers to
Reduce Area, and HDL Block Properties.

HDL-optimized FIR Rate Conversion block and System object
FIR Rate Conversion HDL Optimized block in DSP System Toolbox upsamples, filters, and
downsamples a signal using an efficient polyphase FIR structure. The block operates on one sample
at a time and provides hardware control signals to pace the flow of samples in and out of the block.
The dsp.HDLFIRRateConverter System object provides equivalent MATLAB functionality. Both the
block and System object support HDL code generation.

 Block Enhancements

17-5

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/reduce-critical-path-with-distributed-pipelining.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/resource-sharing-of-multipliers-area-optimization.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/resource-sharing-of-multipliers-area-optimization.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/block-implementation-parameters.html

Code Generation and Verification

HDL Coder Configuration Parameters in list view
The Configuration Parameters list view shows HDL Code Generation parameters. In list view, you can
search, filter, sort, and edit parameters. You can also get command-line parameter names for use in
scripts. To use the list view, click the List button at the top of the Configuration Parameters dialog
box.

Some of the HDL Code Generation parameters, such as the lint script, synthesis script, and HDL
coding standard parameters, are unavailable in list view. To see all the HDL Code Generation
parameters, use the category view.

To learn about Configuration Parameters list view, see Configuration Parameters Dialog Box
Overview.

Support for configuration parameter Default parameter behavior
HDL code you generate for models that use the configuration parameter Default parameter
behavior, which was previously called Inline parameters, follows the new behavior.

To learn more about the Default parameter behavior name and functionality change, see
Configuration parameter Inline parameters name and functionality change.

Compatibility Considerations
Sample time propagation for Inf rates in Simulink can differ from previous releases. If you have a
model with Inf sample times, check the sample time legend to make sure it shows the rates you
expect.

To fix code generation issues from such models, fully specify the sample time. For example, specify
the sample time for any Constant blocks with Inf sample time.

Test bench performance improvements with file I/O
Infrastructure improvements in test bench generation with file I/O have improved test bench
performance by reducing:

• Simulation time
• Memory use
• Code generation time

HDL Coder writes the DUT stimulus and reference data from your MATLAB or Simulink simulation to
data files (.dat). During HDL simulation, the HDL test bench reads the saved stimulus from the .dat
files.

To learn more about Simulink test bench generation, see Test Bench Generation.

To learn more about MATLAB test bench generation, see Test Bench Generation.

R2015b

17-6

https://www.mathworks.com/help/releases/R2015b/simulink/gui/configuration-parameters-dialog-box-overview.html
https://www.mathworks.com/help/releases/R2015b/simulink/gui/configuration-parameters-dialog-box-overview.html
https://www.mathworks.com/help/releases/R2015b/rtw/release-notes.html#buwj256-1
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/test-bench-generation.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/generate-test-bench-with-file-io.html

Compatibility Considerations
The HDL test bench code generated for a design in a previous release may differ from the code
generated for the same design in the current release.

Previously, by default, DUT stimulus and reference data was generated as constants in the test bench
code. To generate test bench data that used file I/O, you had to set the UseFileIOInTestBench
property to 'on'.

The UseFileIOInTestBench property is now 'on' by default.

Image processing examples
Five examples of image processing and HDL code generation using Vision HDL Toolbox are added in
this release.

• Gamma Correction
• Histogram Equalization
• Edge Detection and Image Overlay
• Edge Detection and Image Overlay with Impaired Frame
• Noise Removal and Image Sharpening

 Code Generation and Verification

17-7

Speed and Area Optimizations

Quality of Results Improvement: Stream and share resources more
broadly and efficiently
The streaming optimization works with:

• Subsystems that contain nested subsystems. Previously, the streamed subsystem had to be a leaf
subsystem.

• A streaming factor that is divisible by vector width. Previously, the streaming factor had to be a
divisor of the vector width.

• Blocks that are not supported for streaming. Instead, the optimization can work around
unsupported blocks. Previously, the presence of unsupported blocks caused streaming to fail.

The resource sharing area optimization can implement shared resources at the clock rate within
clock-rate pipelining regions, without using oversampling.

The resource sharing optimization can now share a subset of all the identical atomic subsystems in
your design. Previously, you had to share all of the atomic subsystems, or none.

The hierarchy flattening optimization can operate on individual atomic subsystems, even if there are
other identical atomic subsystems in the design.

Multiply-Add block
A new block, Multiply-Add, that performs a hardware optimized multiplication-addition operation, is
available in the HDL Operations block library. Using this block can help your design map to DSPs in
hardware. The resource sharing optimization can also share Multiply-Add blocks.

To learn about the Simulink behavior, see Multiply-Add.

To learn about the hardware implementation and HDL block properties, see Multiply-Add.

Hierarchy flattening for masked subsystems and user library blocks
For masked subsystems and user library blocks, you can flatten hierarchy to enable further speed and
area optimization.

For details, see Hierarchy Flattening.

Loop optimization improvement
The loop streaming implementation now uses fewer multiplexers and therefore uses less area.

Complex Gain speed optimization
Register retiming for a complex Gain block inserts a register between the multiplier and adder.

R2015b

17-8

https://www.mathworks.com/help/releases/R2015b/simulink/slref/multiplyadd.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ref/multiplyadd.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/hierararchy-flattening.html

Redesigned serializer for streaming and resource sharing
The serializer used in streaming and resource sharing is redesigned as a combinational switch to use
less area. It no longer uses registers in its implementation.

Tapped Delay optimization
The Tapped Delay block is supported for streaming, retiming, and floating-point library mapping. It
also no longer inhibits clock-rate pipelining.

 Speed and Area Optimizations

17-9

IP Core Generation and Hardware Deployment
Tunable Parameters: Map to AXI4 interfaces to enable hardware run-
time tuning by the embedded software on the ARM processor
For Xilinx Zynq or Altera SoC hardware, you can map tunable parameters in your Simulink model to
an AXI4, AXI4-Lite, or external interface in the generated IP core. You can then use the embedded
software to dynamically tune the parameter in hardware.

You can also map tunable parameters to the PCI interface in the Simulink Real-Time FPGA I/O
workflow.

The HDL Workflow Advisor Target Platform Interface Table shows tunable parameters in the Port
Name column. You can map each tunable parameter to a target platform interface as you can with
any DUT port.

To make a tunable parameter available for mapping to a target interface, use it in a Gain, Constant,
or MATLAB Function block.

End-to-end scripting from design through IP core generation, FPGA
Turnkey, and generic ASIC/FPGA workflows
You can use the HDL Workflow Command Line Interface (CLI) to script the entire generic ASIC/FPGA,
IP core generation, and FPGA Turnkey workflows.

The simplest way to create the script is to configure your design using the HDL Workflow Advisor,
generate a target hardware bitstream or project from your Simulink model, then export a script. You
can run the exported script, which contains HDL Workflow CLI commands, to replicate your HDL
Workflow Advisor settings and generate the same target hardware bitstream or project.

For details, see Run HDL Workflow with a Script.

Synthesis objective for synthesis tool target optimization
You can specify a high-level synthesis objective that maps to your third-party synthesis tool can use to
optimize the target hardware. The following high-level synthesis objectives are available from the
HDL Workflow Advisor and the HDL Workflow Command Line Interface:

• Area Optimized
• Compile Optimized
• Speed Optimized
• None (default)

For details about how the synthesis objective maps to Tcl commands, see Synthesis Objective to Tcl
Command Mapping.

AXI4-Stream vector interface
In the hardware-software codesign workflow, for streaming applications, you can use vector ports to
connect the hardware DUT to the rest of the model. With an Embedded Coder license, you can then

R2015b

17-10

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/run-hdl-workflow-as-a-script.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/synthesis-objective-tcl-commands.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/synthesis-objective-tcl-commands.html

generate a software interface model that includes the embedded software DMA driver block for the
generated IP core.

In the hardware DUT, connect the top-level input and output vector ports to Serializer1D and
Deserializer1D blocks. HDL Coder detects this modeling pattern, and generates a software interface
model that replaces the Serializer1D, Deserializer1D, and DUT.

For details, see Model Design for AXI4-Stream Interface Generation.

Connect IP core with other IP blocks in custom reference designs
Using the hdlcoder.ReferenceDesign.addInternalIOInterface method, you can define a
connection between your generated IP core and other IP in a custom reference design. You can use
this method for Altera Quartus II, Xilinx Vivado, and Xilinx ISE hardware targets.

Kintex UltraScale and Virtex UltraScale device family support in
generic ASIC/FPGA and IP core generation workflows
In the generic ASIC/FPGA workflow and IP core generation workflow, you can target Xilinx Kintex
UltraScale and Virtex UltraScale devices.

 IP Core Generation and Hardware Deployment

17-11

https://www.mathworks.com/help/releases/R2015b/hdlcoder/ug/model-design-for-axi4-stream-interface-generation.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ref/hdlcoder.referencedesign.addinternaliointerface.html

R2015a

Version: 3.6

New Features

Bug Fixes

Compatibility Considerations

18

Model and Architecture Design
Localized control using pragmas for pipelining, loop streaming, and
loop unrolling in MATLAB code
You can use pragmas in your MATLAB code to specify pipelining, loop streaming, and loop unrolling
optimizations for specific operations.

For a loop statement, you can use coder.hdl.loopspec to specify loop unrolling or loop streaming.

For an operation or expression, you can use coder.hdl.pipeline to insert one or more pipeline
registers.

The following example shows how to use these two pragmas:

function y = hdltest(x)
 pv = uint8(1);
 pv = coder.hdl.pipeline(pv + x, 4);

 y = uint8(zeros(1,10));

 coder.hdl.loopspec('stream', 5);
 for i = 1:10
 y(i) = pv + i;
 end
end

To learn more, see:

• Pipeline MATLAB Expressions
• Optimize MATLAB Loops

Compatibility Considerations
If you have a model that uses the VariablesToPipeline HDL block property, or a MATLAB design that
uses the HDL Workflow Advisor Pipeline variables field, the software displays a warning when you
generate code.

Replace instances of Variables ToPipeline or Pipeline variables with coder.hdl.pipeline.
VariablesToPipeline and Pipeline variables will be removed in a future release.

Model templates for HDL code generation
Model templates are available for you to use when designing a model for HDL code generation. These
model templates show design patterns for using Simulink blocks to model hardware and generate
efficient HDL code.

For example, the Simulink Template Gallery contains model templates for ROM, state machines, shift
registers, and multipliers that map to DSP48s.

To view the HDL Coder model templates, open the Simulink Library Browser, click the New Model
button arrow, and select From Template. In the Simulink Template Gallery, browse to the HDL Coder
folder.

R2015a

18-2

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.loopspec.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/pipeline-matlab-expressions.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/loop-optimization-1.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/block-implementation-parameters.html#bubbbgb-1
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html

For more information, see Simulink Templates For HDL Code Generation.

Tunable parameter data type and model reference support
enhancements
You can generate a DUT port for tunable parameters that have the following data types:

• Complex
• Vector
• Structure
• Enumeration

You can also generate a DUT port for tunable parameters when your DUT is a model reference.

 Model and Architecture Design

18-3

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/hdl-coder-simulink-templates.html

To learn how to generate code for tunable parameters, see Generate DUT Ports For Tunable
Parameters.

Include custom or legacy code using DocBlock
You can integrate custom or legacy HDL code into your design with a black box subsystem that
contains DocBlock.

In the DocBlock HDL Block Properties dialog box, set Architecture to HDLText and
TargetLanguage to your target HDL language. Specify the interface to your custom code by
customizing the black box subsystem interface.

For details, see Integrate Custom HDL Code Using DocBlock.

Single library for VHDL code generated from model references
You can generate VHDL code for model references in your design into a single library. To generate
code into a single library, set the UseSingleLibrary property to on using makehdl or
hdlset_param.

Timing controller architecture and postfix options in Configuration
Parameters dialog box and HDL Workflow Advisor
You can specify the timing controller architecture and timing controller postfix in the Configuration
Parameters dialog box and HDL Workflow Advisor, from both Simulink and MATLAB.

You can also specify these timing controller options at the command line.

Functionality Being Removed or Changed
Functionality What Happens When

You Use This
Functionality

Use This Functionality
Instead

Compatibility
Considerations

AlteraBlackBox
architecture for
Subsystem block

The software displays
an error.

Create an Altera DSP
Builder Subsystem

Replace all instances of
AlteraBlackBox with
Module, and follow the
procedure in Create an
Altera DSP Builder
Subsystem.

XilinxBlackBox
architecture for
Subsystem block

The software displays
an error.

Create a Xilinx System
Generator Subsystem

Replace all instances of
XilinxBlackBox with
Module, and follow the
procedure in Create a
Xilinx System Generator
Subsystem.

R2015a

18-4

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/generate-code-for-tunable-parameters.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/generate-code-for-tunable-parameters.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/integrate-custom-hdl-code-using-docblock.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/usesinglelibrary.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/code-generation-with-xilinx-system-generator-subsystems.html

Functionality What Happens When
You Use This
Functionality

Use This Functionality
Instead

Compatibility
Considerations

VariablesToPipelin
e block property or
Pipeline variables
field

Still runs. coder.hdl.pipeline Replace all instances of
VariablesToPipelin
e or Pipeline variables
with
coder.hdl.pipeline.
See “Localized control
using pragmas for
pipelining, loop
streaming, and loop
unrolling in MATLAB
code” on page 18-2.

 Model and Architecture Design

18-5

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/coder.hdl.pipeline.html

Block Enhancements

Enumeration support at DUT ports
You can use enumerated data at the top-level DUT ports for your design, whether the DUT is a
MATLAB design function, or a Simulink subsystem or model reference.

Map to multiple RAM banks
You can map an hdl.RAM System object in your MATLAB code to multiple RAM banks.

If you specify vector inputs to the step method, the hdl.RAM maps to RAM banks. The number of
RAM banks is the same as the number of elements in each input vector.

Code generation for bus output from Bus Selector and Constant
blocks
You can generate code for:

• Bus Selector with Output as bus enabled.
• Constant with Output data type set to Bus.

Initial condition for Deserializer1D
For the Deserializer1D block, you can specify the Initial condition.

Block support enhancements
Additional Simulink block features are supported for HDL code generation:

• Delay with delay length of 0
• Delay with Show enable port enabled
• Dot Product within a delay balancing region
• Model reference block Description field maps to a comment
• Deserializer1D and Serializer1D support enumeration data.

Code generation for predefined System objects in MATLAB System
block
You can generate code for the following predefined System objects when you use them in a MATLAB
System block:

• hdl.RAM
• comm.HDLCRCDetector
• comm.HDLCRCGenerator
• comm.HDLRSDecoder

R2015a

18-6

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/hdl.ram-class.html
https://www.mathworks.com/help/releases/R2015a/simulink/slref/deserializer1d.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/hdl.ram-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.hdlcrcdetector-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.hdlcrcgenerator-class.html
https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.hdlrsdecoder-class.html

• comm.HDLRSEncoder
• dsp.DCBlocker
• dsp.HDLComplexToMagnitudeAngle
• dsp.HDLFFT
• dsp.HDLIFFT
• dsp.HDLNCO

Specify filter coefficients using a System object
For Biquad Filter, FIR Decimation, FIR Interpolation, CIC Decimation, and CIC Interpolation blocks,
HDL code generation is supported for Coefficient source set to System object. These blocks and
objects are available in DSP System Toolbox.

Libraries for HDL-supported DSP System Toolbox and Communications
Toolbox blocks
Find blocks that support HDL code generation, in the ‘DSP System Toolbox HDL Support’ and
‘Communications System Toolbox HDL Support’ libraries, in the Simulink library browser. Alternately,
you can type dsphdllib and commhdllib at the MATLAB command prompt to open these libraries.

The blocks in dsphdllib and commhdllib have their parameters set for HDL code generation.

Support for image processing, video, and computer vision designs in
new Vision HDL Toolbox product
Vision HDL Toolbox provides pixel-streaming algorithms for the design and implementation of vision
systems on FPGAs and ASICs. It provides a design framework that supports a diverse set of interface
types, frame sizes, and frame rates, including high-definition (1080p) video. The image processing,
video, and computer vision algorithms in the toolbox use an architecture appropriate for HDL
implementations.

The toolbox algorithms are designed to generate readable, synthesizable code in VHDL and Verilog
(with HDL Coder). The generated HDL code can process 1080p60 in real time.

Toolbox capabilities are available as MATLAB System objects and Simulink blocks.

See Vision HDL Toolbox

Support for ‘inherit via internal rule’ data type setting on FIR
Decimation and Interpolation blocks
FIR Decimation and FIR Interpolation blocks now support HDL code generation with data types
specified by Inherit via internal rule. These blocks are available in DSP System Toolbox.

 Block Enhancements

18-7

https://www.mathworks.com/help/releases/R2015a/comm/ref/comm.hdlrsencoder-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.dcblocker-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlcomplextomagnitudeangle-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlnco-class.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/index.html

Code Generation and Verification

Coding standard check for X and Z constants
When you enable the Industry coding standard, HDL Coder checks for unknown or high-impedance
constants in your design. If your design uses these constants, the coder displays a warning.

For VHDL, the coder checks for X, Z, U, W, H, L, and -. For Verilog, the coder checks for X and Z.

Coding style improvements
The generated code has the following coding style improvements:

• Stateflow charts for Moore machines generate code that follows the coding style guidelines from
Altera and Xilinx. Open the hdlcoder_fsm_mealy_moore model as mentioned in Generate HDL
for Mealy and Moore State Machines to see an example of a Moore chart that generates this style
of HDL code.

• Comments for a Simulink block appear with the main body of the associated generated code.
• For Unit Delay Resettable, Unit Delay Enabled Resettable, and Delay with External reset set to

Level, the reset signal is applied within the clocked region for better synthesis results.
• Fewer temporary variables for improved multiplier mapping and readability.
• Expressions of the form (a+1)-1 are reduced to a.
• One-line boolean expressions are generated when they can replace if-else statements.
• Verilog code generated for arrays of constants is more compact. The number of lines of generated

code is reduced by 50%.

Example HDL implementation of LTE OFDM modulator and detector
with LTE Toolbox
The Verification of HDL Implementation of LTE OFDM Modulator and Detector example uses
Simulink blocks that support HDL code generation to implement a hardware-friendly LTE Orthogonal
Frequency Division Multiplexing (OFDM) modulator and detector. Running this example requires LTE
Toolbox™.

R2015a

18-8

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/using-mealy-and-moore-machine-types-in-hdl-code-generation.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/using-mealy-and-moore-machine-types-in-hdl-code-generation.html
https://www.mathworks.com/help/releases/R2015a/lte/examples/verification-of-hdl-implementation-of-lte-ofdm-modulator-and-detector.html

Speed and Area Optimizations
Critical path estimation without running synthesis
Critical path estimation helps you to find the timing critical path in your design without running third-
party synthesis tools.

If you enable critical path estimation when you generate code, HDL Coder computes the timing
critical path and generates a script that highlights the estimated critical path in the generated model.

To find your estimated critical path, in HDL Workflow Advisor > HDL Code Generation > Set
Code Generation Options > Set Basic Options, select Generate high-level timing critical path
report.

The estimated critical path is calculated using static timing analysis. In the current release, the
timing data for each block is based on Xilinx Virtex-7, speed grade -1 hardware.

If a block in your design does not have timing data, the coder generates a second block highlighting
script. To see the uncharacterized blocks in your design, click the script link displayed in the MATLAB
command window or HDL Workflow Advisor Result pane.

For more information, see Find Estimated Critical Paths Without Synthesis Tools.

Clock-rate pipelining enhancements
The following clock-rate pipelining enhancements are available:

• MATLAB Function blocks that do not have state can be pipelined at the clock rate.
• DUT output ports can be pipelined at the clock rate. In the Simulink HDL Workflow Advisor

Optimizations tab, enable the Allow clock-rate pipelining of DUT output ports option, or set
the ClockRatePipelineOutputPorts property to on.

• HDL Coder generates a MATLAB script that highlights blocks that are inhibiting clock-rate
pipelining. You can run the script by clicking the associated link the optimization report.

Partitioning for large multipliers to improve clock frequency and DSP
reuse on the FPGA
You can partition large multipliers by specifying a maximum multiplier bit width for your design.

To specify the maximum multiplier bit width, in the HDL Workflow Advisor Optimization tab, for
Multiplier partitioning threshold, enter an integer value greater than or equal to 2. See also
MultiplierPartitioningThreshold.

Highlighting for blocks in the model that prevent retiming
With distributed pipelining, HDL Coder generates a MATLAB script that highlights blocks that are
inhibiting the optimization, and displays messages for highlighted blocks that describe why the block
is inhibiting the optimization. The script highlights blocks in your original model and generated
model.

To run the highlighting script, click the associated link in optimization report.

 Speed and Area Optimizations

18-9

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/find-estimated-critical-paths-without-synthesis-tools.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/multiplierpartitioningthreshold.html

Script generation is on by default. You can disable script generation by setting the
DistributedPipeliningBarriers property to off with makehdl or hdlset_param.

Resource sharing for adders and more control over shareable
resources
You can now specify the types of blocks or operations to share in the parts of your design that have
resource sharing enabled. You can enable or disable resource sharing for adders, multipliers, atomic
subsystems, and MATLAB Function blocks.

You can also specify minimum bit widths for shared adders and multipliers.

Speed and area optimizations for designs that use Unit Delay Enabled,
Unit Delay Resettable, and Unit Delay Enabled Resettable
You can use speed and area optimizations in designs that contain Unit Delay Enabled, Unit Delay
Resettable, and Unit Delay Enabled Resettable blocks. For example, you can use the following
optimizations:

• Resource sharing
• Streaming
• Distributed pipelining or retiming
• Input, output, and constrained output pipelining
• Clock-rate pipelining

Resource sharing for multipliers and adders with input data types in
different order
You can share multipliers or adders when their input ports have the same data types, but in a
different order. For example, you can share the following two multipliers:

• Multiplier A, with uint8 data on port X and uint16 data on port Y.
• Multiplier B, with uint16 data on port X and uint8 data on port Y.

Vector streaming for MATLAB code
When the loop streaming optimization is enabled in MATLAB code, HDL Coder applies the streaming
optimization to vector operations to minimize multiplexer and register usage.

The following types of vector operations benefit from vector streaming:

• Single vector operations.

For example:

y = u .* v;
• Chained vector operations.

For example:

R2015a

18-10

t = u .* v;
y = t + w;

• Chained vector operations across a persistent variable.

For example:

persistent acc;
if isempty(acc)
 acc = uint16(zeros(size(u)));
end

t = u .* v;
acc = t + acc;
y = acc;

 Speed and Area Optimizations

18-11

IP Core Generation and Hardware Deployment

Mac OS X platform support
You can install and run HDL Coder to generate code on the 64-bit Mac OS X platform.

AXI4-Stream interface generation for Xilinx Zynq IP core
You can generate an IP core with an AXI4-Stream interface when you target the Xilinx Zynq-7000
platform and your synthesis tool is Xilinx Vivado.

For an example that shows how to generate an HDL IP core with an AXI4-Stream interface, see
Getting Started with AXI4-Stream Interface in Zynq Workflow.

Custom reference design and custom SoC board support
You can now define a custom SoC board or a custom reference design.

In the HDL Workflow Advisor, you can generate an IP core for a custom board, insert it into a custom
reference design, and generate an FPGA bit stream for the SoC hardware.

To learn more about defining and registering a custom board or custom reference design, see:

• Board and Reference Design Registration System
• Register a Custom Board
• Register a Custom Reference Design

For an example, see Define and Register Custom Board and Reference Design for SoC Workflow.

Automatic iterative optimization for IP core generation and FPGA
Turnkey workflows
After you achieve your clock frequency target using automatic iterative optimization, you can
generate a custom IP core or use the FPGA Turnkey workflow with the optimized design.

Speedgoat IO331-6 digital I/O interface target
When you target the Speedgoat IO331-6 board, in the HDL Workflow Advisor Target platform
interface table, you can select TTL I/O Channel [0:15] to connect your design interface to
digital I/O pins.

IP core settings saved with model
For the IP core generation workflow, when you specify IP core settings, HDL Coder saves the
information with your model. The following HDL Workflow Advisor fields are saved with the model as
HDL block properties of the DUT block.

R2015a

18-12

https://www.mathworks.com/help/releases/R2015a/hdlcoder/examples/getting-started-with-axi4-stream-interface-in-zynq-workflow.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/board-and-reference-design-system.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/register-a-custom-board.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ug/register-a-custom-reference-design.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/examples/define-and-register-custom-board-and-reference-design-for-soc-workflow.html

HDL Workflow Advisor field HDL Block Property
IP core name IPCoreName
IP core version IPCoreVersion
Additional source files IPCoreAdditionalFiles
Processor/FPGA synchronization ProcessorFPGASynchronization

For the DUT block, you can set and view IPCoreName, IPCoreVersion, IPCoreAdditionalFiles,
and ProcessorFPGASynchronization with the HDL Block Properties dialog box or hdlset_param
and hdlget_param. To learn more about the block properties, see Atomic Subsystem or Subsystem

For an example that shows how to configure target hardware settings in your model, see Save Target
Hardware Settings in Model.

Updates to supported software
HDL Coder has been tested with:

• Xilinx Vivado Design Suite 2014.2
• Altera Quartus II 14.0

For a list of supported third-party tools and hardware, see Supported Third-Party Tools and
Hardware.

 IP Core Generation and Hardware Deployment

18-13

https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/atomicsubsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/ref/subsystem.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/examples/save-target-hardware-settings-in-model.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/examples/save-target-hardware-settings-in-model.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2015a/hdlcoder/gs/language-and-tool-version-support.html

R2014b

Version: 3.5

New Features

Bug Fixes

Compatibility Considerations

19

Model and Architecture Design

Custom or legacy HDL code integration in the MATLAB to HDL
workflow
You can use a black box System object, hdl.BlackBox, to integrate custom HDL code into your
design in the MATLAB to HDL workflow. For example, you can integrate handwritten or legacy HDL
code that you previously generated from MATLAB code or a Simulink model.

For an example that shows how to use hdl.BlackBox, see Integrate Custom HDL Code Into
MATLAB Design.

Model reference as DUT for code generation
You can directly generate code for a model reference, without placing it in a Subsystem block.
Previously, the code generation DUT had to be a Subsystem block.

Tunable parameter support for Gain and Constant blocks
The coder generates a top-level DUT port for each tunable parameter in your DUT that you use as the
Gain parameter in a Gain block, or the Constant value parameter in a Constant block.

For details, see Generate Code For Tunable Parameters.

Code generation for Stateflow active state output
If you enable active state output to show child activity or leaf state activity for a Stateflow block, the
coder generates code for the active state output. See Active State Output.

Clock enable minimization for code generated from MATLAB designs
You can minimize clock enable logic in your generated code by setting the MinimizeClockEnables
property of the coder.HdlConfig object to true, or by enabling the Minimize clock enables
option in the HDL Workflow Advisor.

For details, see Minimize Clock Enables.

HDL Block Properties dialog box shows only valid architectures
For each block supported for code generation, the HDL Block Properties dialog box Architecture
drop-down list shows only the architectures that are valid for the block based on mask parameter
settings. Previously, all architectures were available for selection regardless of mask parameter
settings, and invalid settings caused errors during code generation.

2-D matrix types in HDL generated for MATLAB matrices
When you have matrices in your MATLAB code, you can generate 2-D matrices in HDL code. By
default, the software generates HDL vectors with additional index computation logic, which can use
more area in the synthesized hardware than HDL matrices.

R2014b

19-2

https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdl.blackbox-class.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/include-custom-hdl-code.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/include-custom-hdl-code.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-code-for-tunable-parameters.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/chart.html#bui6ced-1
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/minimize-clock-enables.html

To generate 2-D matrix types in HDL in the MATLAB to HDL workflow:

• In the HDL Workflow Advisor, in the HDL Code Generation > Coding Style tab, select Use
matrix types in HDL code.

• At the command line, set the UseMatrixTypesInHDL property of the coder.HdlConfig object
to true.

Previously, 2-D matrix types could be generated in HDL for the Simulink MATLAB Function block, but
not in the MATLAB to HDL workflow.

 Model and Architecture Design

19-3

Block Enhancements

Code generation for HDL optimized FFT/IFFT System object and HDL
optimized Complex to Magnitude-Angle System object and block
You can generate code for the dsp.HDLFFT and dsp.HDLIFFT System objects, Complex to
Magnitude-Angle HDL Optimized block, and dsp.ComplexToMagnitudeAngle System object, which
are available in the DSP System Toolbox.

Added features to HDL optimized FFT/IFFT blocks, including reduced
latency
For details of the updates to the FFT HDL Optimized and IFFT HDL Optimized blocks, see the DSP
System Toolbox release notes.

Compatibility Considerations
The FFT HDL Optimized and IFFT HDL Optimized blocks take fewer cycles to compute one frame of
output than in previous releases. For instance, for the default 1024-point FFT, the latency in R2014a
was 1589 cycles whereas in R2014b the latency is 1148. The latency is displayed on the block icon.

If you have manually matched latency paths in models using the R2014a version of the FFT HDL
Optimized and IFFT HDL Optimized block, adjust the delay on those paths to accommodate the lower
FFT latency.

HDL Reciprocal block with Newton-Raphson Implementation
The HDL Reciprocal block is available with Simulink. Use this block to implement division operations
in models intended for HDL code generation. HDL Reciprocal has two Newton-Raphson HDL
implementations, ReciprocalNewton and ReciprocalNewtonSingleRate. The new
implementations use fewer hardware resources and can achieve higher clock frequency than Divide
or Math Function HDL block implementations.

For the Divide and Math Function blocks, the names of the Newton-Raphson HDL block
implementations have changed:

• RecipNewton is now ReciprocalRsqrtBasedNewton.
• RecipNewtonSingleRate is now ReciprocalRsqrtBasedNewtonSingleRate.

If you open a model from a previous release, HDL Coder automatically maps the RecipNewton and
RecipNewtonSingleRate implementation names to ReciprocalRsqrtBasedNewton and
ReciprocalRsqrtBasedNewtonSingleRate, respectively.

To learn about the HDL Reciprocal block, see HDL Reciprocal.

To learn about the ReciprocalNewton and ReciprocalNewtonSingleRate implementations, see
HDL Reciprocal.

R2014b

19-4

https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlcomplextomagnitudeangle-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/hdlreciprocal.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/hdlreciprocal.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdlreciprocal.html

Serializer1D and Deserializer1D blocks
The following new blocks are available from the HDL Operations library for simulation and code
generation:

• Serializer1D
• Deserializer1D

Additional blocks supported for code generation
The following blocks are now supported for code generation:

• Backlash
• Bus assignment
• Coulomb and Viscous Friction
• DC Blocker
• Dead Zone/Dead Zone Dynamic
• Discrete PID Controller
• Hit Crossing
• HDL Reciprocal
• Serializer1D/Deserializer1D
• Wrap to Zero

Composite user-defined System object support
You can generate code for user-defined System objects that contain child user-defined System
objects.

System object output and update method support
You can generate code for the output and update methods in user-defined System objects that inherit
from the matlab.system.mixin.Nondirect class.

hdlram renamed to hdl.RAM
The hdlram System object has been renamed to hdl.RAM and is now available with MATLAB.
Previously, hdlram required a Fixed-Point Designer license.

Compatibility Considerations
If you open a design that uses hdlram, the software displays a warning. For continued compatibility
with future releases, replace instances of hdlram with hdl.RAM.

 Block Enhancements

19-5

https://www.mathworks.com/help/releases/R2014b/simulink/slref/serializer1d.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/deserializer1d.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/backlash.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/busassignment.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/coulombandviscousfriction.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/dcblocker.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/deadzone.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/deadzonedynamic.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/discretepidcontroller.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hitcrossing.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdlreciprocal.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/serializer1d.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/deserializer1d.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/wraptozero.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdl.ram-class.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdl.ram-class.html

Functionality Being Removed or Changed
Functionality What Happens When

You Use This
Functionality

Use This Functionality
Instead

Compatibility
Considerations

HDL Streaming FFT Still runs. The block is
forwarded from
hdldemolib to
dsp.obselete.

FFT HDL Optimized
block, which is available
in the DSP System
Toolbox.

This block will be
removed in a future
release.

HDL FFT Still runs. This block is
renamed “HDL
Minimum Resource
FFT”. It is forwarded
from hdldemolib
dsp.obselete.

FFT HDL Optimized
block, which is available
in the DSP System
Toolbox.

This block will be
removed in a future
release.

R2014b

19-6

https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html

Code Generation and Verification

Coding standards customization
If you enable HDL coding standard rule checking, you can enable or disable specific rules. You can
specify rule parameters. For example, you can specify the maximum nesting depth for if-else
statements. See HDL Coding Standard Customization.

HDL Designer script generation
You can now generate a lint tool script for Mentor Graphics HDL Designer.

To learn about HDL lint script generation for your Simulink design, see Generate an HDL Lint Tool
Script.

To learn about HDL lint script generation for your MATLAB design, see Generate an HDL Lint Tool
Script.

Traceable names for RAM blocks and port signals
When you generate code for a RAM block from the HDL Operations library, the name in the
generated code reflects the name in the model. Similarly, port signal names in the generated code are
inherited from your model.

For each RAM block of a particular size, the coder generates an HDL module. The module file name
reflects the name and size of the RAM block or persistent variable in your design.

For example, suppose DPRAM_foo is the name of a Dual Port RAM block in your model. The
generated code for the instance is:

u_DPRAM_foo : DualPortRAM_Wrapper_256x8b

The RAM module name and wrapper name also match the name of the Simulink block:

DualPortRAM_256x8b.vhd
DualPortRAM_Wrapper_256x8b.vhd

for-generate statements in generated VHDL code
When you generate VHDL code for block architectures that use replicated structures, the coder
generates for-generate statements for better readability. For example, VHDL code generated for
the Add and Product blocks uses for-generate statements.

Validation model generation regardless of delay balancing results
When you enable the Generate validation model option, HDL Coder generates the validation model
even if delay balancing is unsuccessful. In previous releases, if delay balancing was unsuccessful, the
coder did not generate the validation model.

 Code Generation and Verification

19-7

https://www.mathworks.com/help/releases/R2014b/hdlcoder/ref/hdlcodingstandardcustomization-properties.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html

Speed and Area Optimizations

Clock-rate pipelining to optimize timing in multi-cycle paths
In the Simulink to HDL workflow, for speed optimizations that insert pipeline registers, the coder
identifies multi-cycle paths in your design and inserts pipeline registers at the clock rate instead of
the data rate. When the optimization is in a slow-rate region or multi-cycle path of the design, clock
rate pipelining enables the software to perform optimizations without adding extra latency, or by
adding minimal latency. It also enables optimizations such as pipelining and floating-point library
mapping inside feedback loops.

Clock-rate pipelining is enabled by default. You can disable clock-rate pipelining in one of the
following ways:

• In the HDL Workflow Advisor, in the HDL Code Generation > Set Code Generation Options >
Set Advanced Options > Optimization tab, select Clock-rate pipelining.

• At the command line, use makehdl or hdlset_param to set the ClockRatePipelining
parameter to off.

For details, see Clock-Rate Pipelining.

RAM mapping for user-defined System object private properties
Private properties in user-defined System objects can map to RAM. For details, see Implement RAM
Using a Persistent Array or System object Properties.

Highlighting for feedback loops that inhibit optimizations
You can generate a MATLAB script that highlights feedback loops that may inhibit delay balancing or
speed and area optimizations. The script highlights feedback loops in your original model and
generated model.

You can also save the highlighting information in a MATLAB script.

For details, see Find Feedback Loops.

Optimizations available for conditional-execution subsystems
The following optimizations are now supported for enabled subsystems and triggered subsystems:

• Resource sharing
• Streaming
• Constrained overclocking
• Floating-point library mapping
• Hierarchy flattening
• Delay balancing
• Automatic iterative optimization

R2014b

19-8

https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/clock-rate-pipelining.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/implement-ram-using-matlab-code.html#bt3f6yo-1
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/implement-ram-using-matlab-code.html#bt3f6yo-1
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/find-feedback-loops.html

Variable pipelining in conditional MATLAB code
HDL code generation now supports variable pipelining inside conditional MATLAB code for the
MATLAB to HDL workflow and the MATLAB Function block in the Simulink to HDL workflow.

Optimizations available with UseMatrixTypesInHDL for MATLAB
Function block
When you enable 2-D matrix types in the generated HDL code, for the MATLAB to HDL workflow and
Simulink to HDL workflow, speed and area optimizations are available. Previously, for the MATLAB
Function block, the UseMatrixTypesInHDL parameter was incompatible with speed and area
optimizations.

 Speed and Area Optimizations

19-9

IP Core Generation and Hardware Deployment

Support for Xilinx Vivado
The HDL Coder software is now tested with Xilinx Vivado Design Suite 2013.4. You can:

• Generate a custom IP core for the Zynq-7000 platform and automatically integrate it into a Vivado
project for use with IP Integrator.

• Program FPGA hardware supported by Vivado using the HDL Workflow Advisor.
• Perform back-annotation analysis of your design.
• Generate synthesis scripts.

IP core generation for Altera SoC platform
You can generate a custom IP core with an AXI4 interface for the Altera SoC platform.

HDL Coder can also insert your custom IP core into a predefined Qsys project to target the Altera
Cyclone V SoC development kit or Arrow SoCKit development board. The coder can connect the IP
core to the ARM processor via the AXI interface within the project.

The software provides add-on support for Altera SoC hardware via the HDL Coder Support Package
for Intel SoC Devices. For more details, see HDL Coder Support Package for Altera SoC Platform.

Custom HDL code for IP core generation from MATLAB
You can integrate custom HDL code, such as handwritten or legacy HDL code, into your design in the
MATLAB to HDL IP core generation workflow. Use one or more hdl.BlackBox System objects in
your MATLAB design, and add the HDL source files in the Additional source files field.

To learn how to use the Additional source files field, Generate a Board-Independent IP Core from
MATLAB.

Target platform interface mapping information saved with model
For the IP core generation workflow, FPGA turnkey workflow, or Simulink Real-Time FPGA I/O
workflow, when you map each of your DUT top-level ports to a platform interface, HDL Coder saves
the interface mapping information as port properties in your model. The coder also saves workflow
and target platform information with the model.

For DUT Inport and Outport blocks, you can set and view IOInterface and IOInterfaceMapping
with the HDL Block Properties dialog box or hdlset_param and hdlget_param.

For an example that shows how to configure target platform interface settings, see https://
www.mathworks.com/help/releases/R2014b/hdlcoder/examples/save-target-hardware-settings-in-
model.html.

R2014b

19-10

https://www.mathworks.com/help/releases/R2014b/supportpkg/alterasochdlcoder/index.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-a-custom-ip-core-from-matlab.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/ug/generate-a-custom-ip-core-from-matlab.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/examples/save-target-hardware-settings-in-model.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/examples/save-target-hardware-settings-in-model.html
https://www.mathworks.com/help/releases/R2014b/hdlcoder/examples/save-target-hardware-settings-in-model.html

Documentation installation with hardware support package
Starting in R2014b, each hardware support package that you install comes with its own
documentation. For a list of support packages available for HDL Coder, with links to documentation,
see HDL Coder Supported Hardware.

 IP Core Generation and Hardware Deployment

19-11

https://www.mathworks.com/help/releases/R2014b/hdlcoder/gs/hdl-coder-supported-hardware.html

R2014a

Version: 3.4

New Features

Bug Fixes

Compatibility Considerations

20

Model and Architecture Design

HDL block library in Simulink
The HDL Coder library, which contains blocks supported for HDL code generation, is available in
Simulink. When you create a model using the HDL Coder library, the blocks are preconfigured with
settings suitable for code generation.

The HDL Operations library, previously called hdldemolib, is available in Simulink as part of the
HDL Coder library. Previously, the HDL Operations blocks were available only with an HDL Coder
license.

To view the HDL Operations block library from the Simulink Library Browser, open the HDL Coder
folder and select HDL Operations.

Persistent keyword not needed in HDL code generation
If your MATLAB code includes a System object that does not have states, you do not need to include
the persistent keyword for HDL code generation.

For details, see Limitations of HDL Code Generation for System Objects.

Negative edge clocking
You can clock your design on the falling edge of the clock.

R2014a

20-2

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/system-objects.html#bteb8dr-1

To generate code that clocks your design on the negative edge of the clock, in the Configuration
Parameters dialog box, for HDL Code Generation > Global Settings > Clock Edge, select Falling
edge.

Alternatively, at the command line, set the ClockEdge property to 'Falling' using makehdl or
hdlset_param.

For details, see ClockEdge.

Bidirectional port specification
You can specify bidirectional ports for Subsystem blocks that have Architecture set to BlackBox. In
the FPGA Turnkey workflow, you can use the bidirectional ports to connect to external RAM.

In the generated code, the ports have the Verilog or VHDL inout keyword. However, Simulink does
not support bidirectional ports, so you cannot simulate the bidirectional behavior in Simulink.

To learn more, see Specify Bidirectional Ports.

Port names in generated code match signal names
You can use the Icon display block parameter on Inport and Outport blocks to make your code more
readable. When you set the Icon display parameter to Signal name, Port number, or Port
number and signal name, the port names in the generated code match the display names of the
connected signals.

ModelReference default architecture for Model block
The Model block default architecture is ModelReference. Previously, the default architecture was
BlackBox.

Compatibility Considerations
When you open a model created in a previous release, a Model block in that design changes
architecture from BlackBox to ModelReference if all the HDL block properties are set to default
settings.

To keep the BlackBox architecture for Model blocks, use one of the following workarounds:

• Open the model using the current release, specify the BlackBox architecture for the affected
Model blocks, and save the model.

• Open the model using a previous release, specify a nondefault setting for each Model block, and
save the model.

Reset for timing controller
You can generate a reset port for the timing controller, which generates the clock, clock enable, and
reset signals in a multirate DUT.

To generate a reset port for the timing controller, set the TimingControllerArch property to
resettable using makehdl or hdlset_param.

 Model and Architecture Design

20-3

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/clockedge.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/customizing-the-generated-interface.html#buayidt-1

To learn more, see Generate Reset for Timing Controller.

Reset port optimization
The coder does not generate a top-level reset port when the code generation subsystem does not
contain resettable delays or blocks.

To generate code without a top-level reset port:

• Set the ResetType HDL block parameter to none for all blocks in the DUT with the ResetType
parameter.

• For MATLAB Function blocks in your DUT, do not enable block level HDL optimizations, which
insert resettable registers.

For details, see ResetType.

Functionality Being Removed or Changed
You cannot save a model that uses an attached control file to apply HDL model or block parameters.

Since the R2010a release, if you open a model that uses a control file, the software shows a warning,
and updates the model by applying the HDL parameters to your model and removing the control file.
For continued compatibility with future releases, save the updated model.

Functionality What Happens When
You Use This
Functionality

Use This Instead Compatibility
Considerations

hdlapplycontrolfil
e

Still runs hdlset_param,
hdlget_param

Do not use control files
for model or block
configuration. Instead,
use hdlset_param and
hdlget_param to
configure your model.

hdlnewblackbox Still runs hdlset_param,
hdlget_param

Do not use control files
for model or block
configuration. Instead,
use hdlset_param and
hdlget_param to
configure your model.

hdlnewcontrol Still runs hdlset_param,
hdlget_param

Do not use control files
for model or block
configuration. Instead,
use hdlset_param and
hdlget_param to
configure your model.

R2014a

20-4

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-reset-for-timing-controller.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-27
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlapplycontrolfile.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlapplycontrolfile.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewblackbox.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewcontrol.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html

Functionality What Happens When
You Use This
Functionality

Use This Instead Compatibility
Considerations

hdlnewcontrolfile Still runs hdlset_param,
hdlget_param

Do not use control files
for model or block
configuration. Instead,
use hdlset_param and
hdlget_param to
configure your model.

hdlnewforeach Still runs hdlset_param,
hdlget_param

Do not use control files
for model or block
configuration. Instead,
use hdlset_param and
hdlget_param to
configure your model.

 Model and Architecture Design

20-5

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewcontrolfile.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlnewforeach.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlset_param.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/hdlget_param.html

Block Enhancements

Code generation for enumeration data types
You can generate code for Simulink, MATLAB, or Stateflow enumerations within your design. In the
current release, you cannot generate code if your design uses enumerations at the top-level DUT
ports.

To learn more about code generation support for enumerations in Simulink designs, see
Enumerations.

To learn more about code generation support for enumerations in MATLAB designs, see Data Types
and Scope.

Code generation for FFT HDL Optimized and IFFT HDL Optimized
blocks
You can generate code for the FFT HDL Optimized and IFFT HDL Optimized blocks, which are
available in the DSP System Toolbox.

Bus support improvements
You can generate code for designs that contain:

• DUT ports connected to buses.
• Buses that are not defined with a bus object.
• Nonvirtual buses.

To learn more, see Buses.

Variant Subsystem support for configurable models
You can generate code for designs containing Variant Subsystem blocks. Using Variant Subsystem
blocks enables you to explore and generate code for different component implementations and design
configurations.

Trigger signal can clock triggered subsystems
You can generate code that uses the trigger signals in Triggered Subsystem blocks as clocks. Using
triggers as clocks enables you to partition your design into different clock regions in the generated
code, but can cause a timing mismatch during testbench simulation.

For details, see Use Trigger As Clock in Triggered Subsystems.

2-D matrix types in code generated for MATLAB Function block
You can now generate 2-D matrices in HDL code when you have MATLAB matrices in a MATLAB
Function block. By default, the software generates HDL vectors with additional index computation
logic, which can use more area in the synthesized hardware than HDL matrices.

R2014a

20-6

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/signal-and-data-type-support.html#buaqcxw-1
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/variables-and-constants.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/variables-and-constants.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/signal-and-data-type-support.html#buaqcxf
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/use-trigger-as-clock-in-triggered-subsystems.html

For details, see UseMatrixTypesInHDL.

64-bit data support
You can generate code for uint64 and int64 data types in MATLAB code, both in the MATLAB-to-
HDL workflow and for the MATLAB Function block in the Simulink-to-HDL workflow.

MATLAB Function block ports must use sfix64 or ufix64 types for 64-bit data, because uint64
and int64 are not yet supported in Simulink.

HDL code generation from MATLAB System block
The MATLAB System block, which you use to include System objects in Simulink models, now
supports HDL code generation.

For details, see MATLAB System.

System object methods in conditional code
HDL code generation now supports System object step method calls inside conditional code regions.

Dual Rate Dual Port RAM block
A new block, Dual Rate Dual Port RAM, is available for simulation and code generation.

The Dual Rate Dual RAM supports two simultaneous read or write accesses at two Simulink rates.
When you generate code, the Dual Rate Dual Port RAM block infers a dual-clock dual-port RAM in
most FPGAs.

To view the block, open the HDL Operations block library.

For more information about the block, see Dual Rate Dual Port RAM. For HDL code generation
details, see Dual Rate Dual Port RAM.

 Block Enhancements

20-7

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/block-implementation-parameters.html#bua8xle-1
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/matlabsystem.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/dualratedualportram.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/dualratedualportram.html

Additional blocks and block implementations supported for code
generation
The following blocks and block implementations are now supported for code generation:

• Sine, Cosine
• Enumerated Constant
• Delay with External reset set to Level.

• Multiport Switch with enumerated type at control input.

The HDL FIFO block no longer requires a DSP System Toolbox license. The HDL FIFO block is
available in the HDL Operations library.

R2014a

20-8

https://www.mathworks.com/help/releases/R2014a/simulink/slref/cosine.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/enumeratedconstant.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/delay.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/multiportswitch.html

Code Generation and Verification

Errors instead of warnings for blocks not supported for code
generation
If your design contains blocks or block architectures that are not supported for HDL code generation,
the software shows an error and does not generate code. Previously, the software showed a warning,
but still generated code, with black box interfaces for the unsupported blocks or block architectures.

Compatibility Considerations
If you want to generate code for models containing unsupported blocks or block architectures, you
must Comment out the unsupported blocks in Simulink.

Ascent Lint script generation
You can now generate a lint tool script for Real Intent Ascent Lint.

To learn about HDL lint script generation for your Simulink design, see Generate an HDL Lint Tool
Script.

To learn about HDL lint script generation for your MATLAB design, see Generate an HDL Lint Tool
Script.

Incremental code generation and synthesis
In the Simulink-to-HDL workflow, and hardware-software codesign workflow, HDL Coder does not
rerun code generation or synthesis tasks unless you have changed your model or other hardware-
related project settings. You can save time when you want to regenerate HDL code or FPGA
programming files without changing your model, code generation options, or hardware target.

Similarly, in the hardware and software codesign workflow, when you modify the embedded software
part of your design without changing the hardware part, HDL Coder does not rerun HDL code
generation or synthesis tasks.

When the coder skips code generation or synthesis tasks, the HDL Workflow Advisor shows a
message. The message contains a link you can click to force the coder to rerun the task.

Automatic C compiler setup
In earlier releases, to set up a compiler to accelerate test bench simulation for MATLAB algorithms,
you were required to run mex -setup. Now, the code generation software automatically locates and
uses a supported installed compiler. You can use mex -setup to change the default compiler. See
Changing Default Compiler.

 Code Generation and Verification

20-9

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
https://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html

Speed and Area Optimizations

RAM mapping scheduler improvements
The RAM mapping scheduling algorithm now minimizes overclocking when your MATLAB code maps
to multiple RAMs. In addition, multiple persistent variables with cyclic read-write dependencies can
now map to RAM.

Performance-prioritized retiming
When you enable distributed pipelining, you can specify a priority for Distributed pipelining
priority: Numerical integrity, or Performance. In the previous release, the distributed pipelining
algorithm prioritized numerical integrity.

For details, see DistributedPipeliningPriority.

Retiming without moving user-created design delays
You can use the Preserve design delays option to prevent distributed pipelining from moving design
delays in your Simulink or MATLAB design. If you specify Preserve design delays, distributed
pipelining does not move the following design delays:

• Persistent variable in MATLAB code, a MATLAB Function block, or a Stateflow Chart
• Unit Delay block
• Integer Delay block
• Memory block
• Delay block from DSP System Toolbox
• dsp.Delay System object from DSP System Toolbox

For details, see PreserveDesignDelays.

Resource sharing factor can be greater than number of shareable
resources
With the resource sharing area optimization, the software shares the maximum number of shareable
resources within your overclocking constraints, even if the sharing factor that you specify is not an
integer divisor of the number of shareable resources. This capability can increase resource sharing,
and therefore reduce area.

For example, if your subsystem has 11 multipliers, and you set SharingFactor to 4, the coder can
implement your design with 3 multipliers: 2 multipliers shared 4 ways, and 1 multiplier shared 3
ways. In the previous release, the coder implemented the design with 5 multipliers: 2 multipliers
shared 4 ways, and 3 unshared multipliers. The resulting implementation requires overclocking by a
factor of 4.

To learn more, see Resource Sharing For Area Optimization.

R2014a

20-10

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/distributedpipeliningpriority.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ref/preservedesigndelays.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/examples/resource-sharing-for-area-optimization.html

Reduced area with multirate delay balancing
When the coder balances delays in a multirate model, it now inserts a single delay at the transition
from a much faster rate to a slow rate, and passes through the data samples aligned with the slow
rate. Previously, the coder inserted a large number of delays at the faster rate.

Serializer-deserializer and multiplexer-demultiplexer optimization
The coder removes back-to-back serializer-deserializer and multiplexer-demultiplexer pairs
introduced by the implementation of optimizations such as resource sharing and streaming. This
results in more area-efficient HDL code.

 Speed and Area Optimizations

20-11

IP Core Generation and Hardware Deployment

ZC706 target for IP core generation and integration into Xilinx EDK
project
You can target the Xilinx Zynq-7000 AP ZC706 Evaluation Board for IP core generation and Xilinx
EDK project integration. After you install the HDL Coder Support Package for Xilinx Zynq-7000
Platform, ZC706 hardware support is available.

Automatic iterative clock frequency optimization
You can use the hdlcoder.optimizeDesign function to achieve either your target clock frequency
or a maximum clock frequency. Based on your clock frequency goal and target device, the software
iteratively generates and synthesizes code, retrieves back annotation data, and inserts delays into
your Simulink model to break the critical path.

To learn more, see Automatic Iterative Optimization.

Synthesis attributes for multipliers
You can now generate code that includes synthesis attributes to specify multipliers in your design
that you want to map to DSPs or logic in hardware. If you specify resource sharing, the software does
not share multipliers that have different synthesis attribute settings.

For Xilinx targets, the generated code uses the use_dsp48 attribute. For Altera targets, the
generated code uses the multstyle attribute.

For details, see DSPStyle.

Custom HDL code for IP core generation
You can integrate custom HDL code into your design in the Simulink-to-HDL IP core generation
workflow. You can integrate handwritten or legacy HDL code into an IP core that you generate from a
Simulink model.

To include custom HDL code in your IP core design, use one or more Model or Subsystem blocks with
Architecture set to BlackBox. Use the Additional source files field in the HDL Workflow Advisor to
specify corresponding HDL file names.

For details of the IP core generation workflow, see Generate a Custom IP Core from Simulink.

Synthesis and simulation tool addition and detection after opening
HDL Workflow Advisor
In the Simulink-to-HDL workflow, you can set up and add a synthesis tool without having to close and
reopen the HDL Workflow Advisor. In the HDL Workflow Advisor, in the Set Target > Set Target
Device and Synthesis Tool task, click Refresh to detect and add the new tool.

R2014a

20-12

https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/automatic-iterative-optimization.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/block-implementation-parameters.html#bubc5wb-1
https://www.mathworks.com/help/releases/R2014a/hdlcoder/ug/generate-a-custom-ip-core.html

You can also set up and add a simulation tool after creating a MATLAB-to-HDL project without having
to close and reopen the project. In the HDL Workflow Advisor, in the HDL Verification > Verify with
HDL Test Bench task, click Refresh list to detect and add the new tool.

xPC Target is Simulink Real-Time
The xPC Target FPGA I/O workflow is now called the Simulink Real-Time FPGA I/O workflow.
This change reflects the xPC Target™ product name change to Simulink Real-Time. For details about
the product name change, see New product that combines the functionality of xPC Target and xPC
Target Embedded Option.

Updates to supported software
HDL Coder has been tested with:

• Xilinx ISE 14.6
• Altera Quartus II 13.0 SP1

For a list of supported third-party tools and hardware, see Supported Third-Party Tools and
Hardware.

 IP Core Generation and Hardware Deployment

20-13

https://www.mathworks.com/help/releases/R2014a/xpc/release-notes.html#bt6ao_2-1
https://www.mathworks.com/help/releases/R2014a/xpc/release-notes.html#bt6ao_2-1
https://www.mathworks.com/help/releases/R2014a/hdlcoder/gs/language-and-tool-version-support.html
https://www.mathworks.com/help/releases/R2014a/hdlcoder/gs/language-and-tool-version-support.html

R2013b

Version: 3.3

New Features

Bug Fixes

Compatibility Considerations

21

Model and Architecture Design

Model reference support and incremental code generation
You can generate HDL code from referenced models using the Model block. To use a referenced
model in a subsystem intended for code generation, in the HDL Block Properties dialog box, set
Architecture to ModelReference.

The coder incrementally generates code for referenced models according to the Configuration
Parameters dialog box > Model Referencing pane > Rebuild options. However, the coder treats
If any changes detected and If any changes in known dependencies detected as the same. For
example, if you set Rebuild to either If any changes detected or If any changes in known
dependencies detected, the coder regenerates code for referenced models only when the
referenced models have changed.

To learn more, see Model Referencing for HDL Code Generation.

Code generation for subsystems containing Altera DSP Builder blocks
You can now generate HDL code for subsystems that include blocks from the Altera DSP Builder
Advanced Blockset.

For details, see Create an Altera DSP Builder Subsystem.

To see an example that shows HDL code generation for an Altera DSP Builder subsystem, see Using
Altera DSP Builder Advanced Blockset with HDL Coder.

Module or entity generation for local functions in MATLAB Function
block
You can now generate instantiable Verilog modules or VHDL entities when you generate code for
local functions in a MATLAB Function block, or for functions on your path that are called from within
a MATLAB Function block.

To enable this feature, in the HDL Block Properties dialog box, set InstantiateFunctions to on. For
details, see InstantiateFunctions.

Reset port optimization
The coder no longer generates a top level reset port when the ResetType HDL block parameter is
set to none for all RAM blocks in the DUT.

In previous releases, the generated code included a reset port even when the RAM reset logic was
suppressed.

Load constants from MAT-files
HDL Coder now generates code for the coder.load function, which you can use to load compile-
time constants from a MAT-file. You no longer have to manually type in constants that were stored in
a MAT-file.

R2013b

21-2

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/model-referencing-for-hdl-code-generation.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/examples/using-altera-dsp-builder-advanced-blockset-with-hdl-coder.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/examples/using-altera-dsp-builder-advanced-blockset-with-hdl-coder.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/block-implementation-parameters.html#bt3rv73

To learn how to use coder.load for HDL code generation, see Load constants from a MAT-File.

 Model and Architecture Design

21-3

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/load-constants-from-a-mat-file.html

Block Enhancements

Code generation for user-defined System objects
You can now generate HDL code from user-defined System objects written in MATLAB. System
objects enable you to create reusable HDL IP.

The step method specifies the HDL implementation behavior. It is the only System object method
supported for HDL code generation.

User-defined System objects are not supported for automatic fixed-point conversion.

To learn how to define a custom System object, see Generate Code for User-Defined System Objects.

Bus signal inputs and outputs for MATLAB Function block and
Stateflow charts
MATLAB Function blocks and Stateflow charts with bus signal inputs or outputs are now supported
for code generation. The bus must be defined with a bus object.

HDL Counter has specifiable start value
You can now specify a start value for the HDL Counter block. When the counter initializes or wraps
around, it counts from the specified start value.

Maximum 32-bit address for RAM
For the Single Port RAM block, Simple Dual Port RAM block, Dual Port RAM block, and hdlram
System object, the maximum address width is now 32 bits. For more information, see:

• hdlram
• RAM Blocks

Removing HDL Support for NCO Block
HDL support for the NCO block will be removed in a future release. Use the NCO HDL Optimized
block instead.

Compatibility Considerations
In the current release, if you generate HDL code for the NCO block, a warning message appears. In a
future release, any attempt to generate HDL code for the NCO block will cause an error.

R2013b

21-4

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-code-for-user-defined-system-objects.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/hdlramclass.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/ram-blocks.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/nco.html

Code Generation and Verification

Coding style improvements according to industry standard guidelines
The coder now follows these industry standard coding style guidelines when generating HDL code:

• Division by a power of 2 becomes a bit shift operation.
• Constants with double data types in the original design are automatically converted to their

canonical fixed-point types as long as there is no loss of precision.
• SystemVerilog keywords are treated as reserved words.
• Intermediate signals and latches are reduced when HDLCodingStandard is set to Industry.
• Real data types generate warnings, except when you target an FPGA floating-point library.

Coding standard report target language enhancement and text file
format
HDL Coder now generates the coding standard report according to target language. Coding standard
errors, warnings, and messages that do not pertain to your target language no longer appear in the
report.

The coding standard report is generated in text file format, in addition to HTML format, to enable
easier comparison between multiple runs.

UI for SpyGlass, Leda, and custom lint tool script generation
You can now use the UI to generate Atrenta SpyGlass, Synopsys® Leda, or custom lint scripts in the
Simulink-to-HDL and MATLAB-to-HDL workflows.

To learn about HDL lint script generation for your Simulink design, see Generate an HDL Lint Tool
Script.

To learn about HDL lint script generation for your MATLAB design, see Generate an HDL Lint Tool
Script.

File I/O to read test bench data in VHDL and Verilog
You can now specify the generated VHDL or Verilog test bench to use file I/O to read input stimulus
and output response data during simulation, instead of including data constants in the test bench
code. Doing so improves scalability for designs requiring long simulations and large test vectors.

This feature is available for Simulink-to-HDL and MATLAB-to-HDL code generation.

To learn about test bench generation with file I/O in the Simulink-to-HDL workflow, see Generate Test
Bench With File I/O.

To learn about test bench generation with file I/O in the MATLAB-to-HDL workflow, see Generate Test
Bench With File I/O.

 Code Generation and Verification

21-5

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/test-bench-generation-with-file-io.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/test-bench-generation-with-file-io.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-test-bench-with-file-io.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-test-bench-with-file-io.html

Floating point for FIL and HDL cosimulation test bench generation
With the R2013b release, HDL Coder HDL workflow advisor for Simulink supports double and single
data types on the DUT interface for test bench generation using HDL Verifier.

Fixed-point file name change
The suffix for generated fixed-point files is now _fixpt. Previously, the suffix was _FixPt.

Compatibility Considerations
If you have MATLAB-to-HDL projects from previous releases that depend on the generated fixed-point
file name, you can use the FixPtFileNameSuffix property to set the suffix to _FixPt.

R2013b

21-6

Speed and Area Optimizations

RAM inference in conditional MATLAB code
The coder now infers RAM from persistent array variables accessed within conditional statements,
such as if-else or switch-case statements, for both MATLAB designs and MATLAB Function blocks in
Simulink.

If you have nested conditional statements, the persistent array variables can map to RAM if accessed
in the topmost conditional statement, but cannot map to RAM if accessed in a lower level nested
conditional statement.

Coding style for improved ROM mapping
The coder now automatically inserts a no-reset register at the output of a constant matrix access.
Many synthesis tools infer a ROM from this code pattern. For details, see Map Matrices to ROM.

Pipeline registers between adder or multiplier and rounding or
saturation logic
The coder now places a pipeline register between an adder or multiplier and associated rounding or
saturation logic when distributing pipelining registers. This register placement can significantly
improve clock frequency.

Distributed pipelining improvements with loop unrolling in MATLAB
Function block
When you enable distributed pipelining for a MATLAB Function block without persistent variables,
set the Loop Optimization option to Unrolling for better timing results.

 Speed and Area Optimizations

21-7

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/map-matrices-to-rom.html

IP Core Generation and Hardware Deployment
IP core integration into Xilinx EDK project for ZC702 and ZedBoard
When you generate an IP core from your MATLAB design or Simulink model, HDL Coder can
automatically insert the IP core into a predefined Xilinx ZC702 or ZedBoard EDK project for the
Zynq-7000 platform. The coder automatically connects the IP core to the AXI interface and ARM
processor in the EDK project.

For an overview of the hardware and software codesign workflow, see Hardware and Software
Codesign Workflow.

For an example that shows how to deploy your MATLAB design in hardware and software on the
Zynq-7000 platform, see Getting Started with HW/SW Co-design Workflow for Xilinx Zynq Platform.

For an example that shows how to deploy your Simulink model in hardware and software on the
Zynq-7000 platform, see Getting Started with HW/SW Co-design Workflow for Xilinx Zynq Platform.

FPGA Turnkey and IP Core generation in MATLAB to HDL workflow
You can now generate a custom IP core with an AXI4-Lite or AXI4-Stream Video interface from a
MATLAB design. You can integrate the generated IP core into a larger design in your Xilinx EDK
project.

You can also automatically program an Altera or Xilinx FPGA development board with code generated
from your MATLAB design, using the HDL Workflow Advisor FPGA Turnkey workflow. To learn how to
use this workflow, see Program Standalone FPGA with FPGA Turnkey Workflow and Getting Started
with FPGA Turnkey Workflow.

Previously, IP core generation and FPGA Turnkey were available only for the Simulink to HDL
workflow.

Synthesis tool addition and detection after MATLAB-to-HDL project
creation
You can now set up and add a synthesis tool after creating a MATLAB-to-HDL project without having
to close and reopen the project. In the HDL Workflow Advisor, in the Set Code Generation Target
task, click Refresh list to detect and add the new tool. For details, see Add Synthesis Tool for
Current MATLAB Session.

Synthesis script generation for Microsemi Libero and other synthesis
tools
You can now generate a Microsemi Libero or custom synthesis tool script during Simulink-to-HDL and
MATLAB-to-HDL code generation.

In the MATLAB-to-HDL workflow, you can now generate synthesis tool scripts customized for Xilinx
ISE, Microsemi Libero, Mentor Graphics Precision, Altera Quartus II, and Synopsys Synplify Pro®.
The coder populates the scripts with default options, but you can further customize the scripts as
needed. In previous releases, you had to enter the synthesis tool commands manually. For details, see
Generate Synthesis Scripts.

R2013b

21-8

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/hardware-and-software-codesign-workflow_bt3qaox-1.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/hardware-and-software-codesign-workflow_bt3qaox-1.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/examples/getting-started-with-hw-sw-co-design-workflow-for-xilinx-zynq-platform.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/examples/getting-started-with-hw-sw-co-design-workflow-for-xilinx-zynq-platform-1.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/program-standalone-fpga-with-fpga-turnkey-workflow-1.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/examples/getting-started-with-fpga-turnkey-workflow.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/examples/getting-started-with-fpga-turnkey-workflow.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/gs/toolbox-setup.html#btp_neo
https://www.mathworks.com/help/releases/R2013b/hdlcoder/gs/toolbox-setup.html#btp_neo
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/generate-synthesis-scripts.html

Floating-point library mapping for mixed floating-point and fixed-
point designs
When you enable FPGA target-specific floating-point library mapping, you can now generate code
from a design containing both floating-point and fixed-point components. The coder determines
whether to map to a floating-point IP block based on the data types in your model.

xPC Target FPGA I/O workflow separate from FPGA Turnkey workflow
The HDL Workflow Advisor target workflow that programs Speedgoat boards to run with xPC Target
is now called the xPC Target FPGA I/O workflow. This workflow is separate from the FPGA Turnkey
workflow for Altera and Xilinx FPGA boards.

For an example that shows how to use the xPC Target FPGA I/O workflow, see Generate Simulink
Real-Time Interface for Speedgoat Boards.

AXM-A75 AD/DA module for Speedgoat IO331 FPGA board
The AXM-A75 AD/DA module for Speedgoat IO331 FPGA board is now available as a hardware target
for the xPC Target FPGA I/O workflow.

Speedgoat IO321 and IO321-5 target hardware support
The xPC Target FPGA I/O workflow now supports the Speedgoat IO321 board and its variant,
Speedgoat IO321-5, as separate hardware targets. Previously, the name of the IO321-5 board was
IO325.

To learn more about the IO321 and IO321-5 boards, see Speedgoat IO321.

Support package for Xilinx Zynq-7000 platform
Generate a custom IP core for the ZC702 or ZedBoard on the Xilinx Zynq-7000 platform using the IP
core generation workflow.

To install this support package for MATLAB-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Select Code Generation Target task, set Workflow to IP
Core Generation.

2 For Platform, select Get more.
3 Use Support Package Installer to install the HDL Coder Support Package for Xilinx Zynq-7000

Platform.

To install this support package for Simulink-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Device and Synthesis Tool task,
set Target workflow to IP Core Generation.

2 For Target platform, select Get more.
3 Use Support Package Installer to install the HDL Coder Support Package for Xilinx Zynq-7000

Platform.

 IP Core Generation and Hardware Deployment

21-9

https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/workflow-for-speedgoat-fpga-io-boards-and-xpc-target.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/ug/workflow-for-speedgoat-fpga-io-boards-and-xpc-target.html
https://www.mathworks.com/help/releases/R2013b/xpc/io_ref/speedgoatio321.html

Support package for Altera FPGA boards
Program Altera FPGA boards with your generated HDL code using the FPGA Turnkey workflow.

To install this support package for MATLAB-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Select Code Generation Target task, set Workflow to
FPGA Turnkey.

2 For Platform, select Get more boards.
3 Use Support Package Installer to install the HDL Coder Support Package for Altera FPGA Boards.

To install this support package for Simulink-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Device and Synthesis Tool task,
set Target workflow to FPGA Turnkey.

2 For Target platform, select Get more boards.
3 Use Support Package Installer to install the HDL Coder Support Package for Altera FPGA Boards.

Compatibility Considerations
Previous versions of HDL Coder had built-in support for Altera FPGA boards in the FPGA Turnkey
workflow. The current version of HDL Coder does not have built-in support for Altera FPGA boards.
To get support for Altera FPGA boards, install the HDL Coder Support Package for Altera FPGA
Boards.

Support package for Xilinx FPGA boards
Program Xilinx FPGA boards with your generated HDL code using the FPGA Turnkey workflow.

To install this support package for MATLAB-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Select Code Generation Target task, set Workflow to
FPGA Turnkey.

2 For Platform, select Get more boards.
3 Use Support Package Installer to install the HDL Coder Support Package for Xilinx FPGA Boards.

To install this support package for Simulink-to-HDL code generation:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Device and Synthesis Tool task,
set Target workflow to FPGA Turnkey.

2 For Target platform, select Get more boards.
3 Use Support Package Installer to install the HDL Coder Support Package for Xilinx FPGA Boards.

Compatibility Considerations
Previous versions of HDL Coder had built-in support for Xilinx FPGA boards in the FPGA Turnkey
workflow. The current version of HDL Coder does not have built-in support for Xilinx FPGA boards. To
get support for Xilinx FPGA boards, install the HDL Coder Support Package for Xilinx FPGA Boards.

R2013b

21-10

Additional FPGA board support for FIL verification, including Xilinx
KC705 and Altera DSP Development Kit, Stratix V edition
Several FPGA boards have been added to the HDL Verifier FPGA board support packages, including
Xilinx KC705 and Altera DSP Development Kit, Stratix V edition. You can select these boards for FIL
verification using the HDL workflow advisor for Simulink.

 IP Core Generation and Hardware Deployment

21-11

R2013a

Version: 3.2

New Features

Bug Fixes

Compatibility Considerations

22

Model and Architecture Design

Code generation for System objects in a MATLAB Function block
You can now generate code from a MATLAB Function block containing System objects.

For details, see System Objects under MATLAB Language Support, in MATLAB Function Block Usage.

Output folder structure includes model name
When you generate code for a subsystem within a model, the output folder structure now includes the
model name.

For example, if you generate code for a subsystem in a model, Mymodel, the output folder is hdlsrc/
Mymodel.

Compatibility Considerations
If you have scripts that depend on a specific output folder structure, you must update them with the
new structure.

Prefix for module or entity name
You can now specify a prefix for every module or entity name in the generated HDL code. This feature
helps you to avoid name clashes when you want to have multiple instances of the HDL code
generated from the same block. For details, see ModulePrefix.

Functionality being removed
Property Name What

Happens
When You
Use This
Property?

Use This Property Instead Compatibility Considerations

RAMStyle Error RAMArchitecture The new property syntax differs.
Replace existing instances of
RAMStyle with the correct
RAMArchitecture syntax.

GainImpls Error ConstMultiplierOptimization The new property syntax differs.
Replace existing instances of
GainImpls with the correct
ConstMultiplierOptimization syntax.

R2013a

22-2

https://www.mathworks.com/help/releases/R2013a/hdlcoder/matlab-function-block.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/moduleprefix.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/ramarchitecture.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/ramarchitecture.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-3
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/block-implementation-parameters.html#bsmj7ju-3

Block Enhancements

Single rate Newton-Raphson architecture for Sqrt, Reciprocal Sqrt
The Sqrt, Reciprocal Sqrt, reciprocal Divide, and reciprocal Math Function blocks now have a single-
rate pipelined architecture. The new architecture enables you to use the high-speed Newton-Raphson
algorithm without multirate or overclocking.

The following table lists each block with its new block implementation.

Block Implementation Name Details
Sqrt SqrtNewtonSingleRate See Sqrt.
Reciprocal Sqrt RecipSqrtNewtonSingleRat

e
See Reciprocal Sqrt.

Divide (reciprocal) RecipNewtonSingleRate See Divide (reciprocal).
Math Function (reciprocal) RecipNewtonSingleRate See Math Function (reciprocal).

Additional System objects supported for code generation
Effective with this release, the following System objects provide HDL code generation:

• comm.HDLCRCGenerator
• comm.HDLCRCDetector
• comm.HDLRSEncoder
• comm.HDLRSDecoder
• dsp.HDLNCO

Additional blocks supported for code generation
The following blocks are now supported for HDL code generation:

• NCO HDL Optimized
• Bias
• Relay
• Dot Product
• Sum with more than two inputs with different signs
• MinMax with multiple input data types

 Block Enhancements

22-3

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btusosf
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btusort
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btuso3m
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/blocks-with-multiple-implementations.html#btuso08
https://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlcrcgeneratorclass.html
https://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlcrcdetectorclass.html
https://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlrsencoderclass.html
https://www.mathworks.com/help/releases/R2013a/comm/ref/comm.hdlrsdecoderclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.hdlncoclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/ncohdloptimized.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/bias.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/relay.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/dotproduct.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/sum.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/minmax.html

Code Generation and Verification

Static range analysis for floating-point to fixed-point conversion
The coder can now use static range analysis to derive fixed-point data types for your floating-point
MATLAB code.

The redesigned interface for floating-point to fixed-point conversion enables you to use simulation
with multiple test benches, static range analysis, or both, to determine fixed-point data types for your
MATLAB variables.

For details, see Automated Fixed-Point Conversion.

Cosimulation and FPGA-in-the-Loop for MATLAB HDL code generation
With the MATLAB HDL Workflow Advisor, the HDL Verification step includes automation for the
following workflows:

• Verify with HDL Test Bench: Create a standalone test bench. You can choose to simulate a model
using ModelSim or Incisive® with a vector file created by the Workflow Advisor.

• Verify with Cosimulation: Cosimulate the DUT in ModelSim or Incisive with the test bench in
MATLAB.

• Verify with FPGA-in-the-Loop: Create the FPGA programming file and test bench, and, optionally,
download it to your selected development board.

You must have an HDL Verifier license to use these workflows.

HDL coding standard report and lint tool script generation
You can now generate a report that shows how well your generated HDL code conforms to an
industry coding standard. Errors and warnings in the report link to elements in your original design
so you can fix problems.

You can also generate third-party lint tool scripts to use to check your generated HDL code. In this
release, you can generate Leda, SpyGlass, and generic scripts.

To learn more about the coding standard report, see HDL Coding Standard Report.

To learn how to generate a coding standard report and lint tool script in the Simulink to HDL
workflow, see:

• Generate an HDL Coding Standard Report
• Generate an HDL Lint Tool Script

To learn how to generate a coding standard report and lint tool script in the MATLAB to HDL
workflow, see:

• Generate an HDL Coding Standard Report
• Generate an HDL Lint Tool Script

R2013a

22-4

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/fixed-point-conversion.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/hdl-coding-standard-report.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-an-hdl-coding-standard-report.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-an-hdl-lint-tool-script.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-a-coding-standard-report.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/generate-an-hdl-lint-tool-script-from-matlab.html

File I/O to read test bench data in Verilog
You can now specify the generated HDL test bench to use file I/O to read input stimulus and output
response data during simulation, instead of including data constants in the test bench code. Doing so
improves scalability for designs needing long simulations.

This feature is available when Verilog is the target language.

For details, see Test Bench Generation with File I/O.

 Code Generation and Verification

22-5

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/test-bench-generation-with-file-io.html

Speed and Area Optimizations

User-specified pipeline insertion for MATLAB variables
You can now specify pipeline register insertion for variables in your MATLAB code. This feature is
available in both the MATLAB to HDL workflow and the MATLAB Function block.

To learn how to pipeline variables in the MATLAB to HDL workflow, see Pipeline MATLAB Variables.

To learn how to pipeline variables in the MATLAB Function block, see Pipeline Variables in the
MATLAB Function Block.

Resource sharing and streaming without over clocking
You can now constrain the resource sharing and streaming optimizations to prevent or reduce
overclocking. The coder optimizes your design based on two parameters that you specify: maximum
oversampling ratio, MaxOversampling, and maximum computation latency,
MaxComputationLatency.

For single-rate resource sharing or streaming, you can set MaxOversampling to 1.

To learn more about constrained overclocking, maximum oversampling ratio, and maximum
computation latency, see:

• Optimization With Constrained Overclocking
• Maximum Oversampling Ratio
• Maximum Computation Latency

Resource sharing for the MATLAB Function block
You can now specify a resource sharing factor for the MATLAB Function block to share multipliers in
the MATLAB code.

For details, see Resource Sharing and Specify Resource Sharing.

Finer control for delay balancing
You can now disable delay balancing for a subsystem within your DUT subsystem.

For details, see Balance Delays.

Complex multiplication optimizations in the Product block
You can now share multipliers used in a single complex multiplication in the Product block.
Distributed pipelining can also move registers between the multiply and add stages of a complex
multiplication.

R2013a

22-6

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/insert-pipeline-registers-for-matlab-variables.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/pipeline-variables-in-a-matlab-function-block.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/pipeline-variables-in-a-matlab-function-block.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/optimization-without-overclocking.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/maximum-oversampling-ratio.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/maximum-computation-latency.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/resource-sharing.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/specify-resource-sharing.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/balance-delays.html

IP Core Generation and Hardware Deployment

Generation of custom IP core with AXI4 interface
You can now generate custom IP cores with an AXI4-Lite or AXI4-Stream Video interface. You can
integrate these custom IP cores with your design in a Xilinx EDK environment for the Xilinx
Zynq-7000 Platform.

For more details, see Custom IP Core Generation.

To view an example that shows how to generate a custom IP core, at the command line, enter:

hdlcoder_ip_core_led_blinking

Coprocessor synchronization in FPGA Turnkey and IP Core Generation
workflows
The coder can now automatically synchronize communication and data transfers between your
processor and FPGA. You can use the new Processor/FPGA synchronization mode in the FPGA
Turnkey workflow with xPC Target, or when you generate a custom IP core.

For more details, see Processor and FPGA Synchronization.

Speedgoat IO331 Spartan-6 FPGA board for FPGA Turnkey workflow
You can now use the Speedgoat IO331 Spartan-6 FPGA board in the FPGA Turnkey workflow with
xPC Target.

You must have an xPC Target license to use this feature.

 IP Core Generation and Hardware Deployment

22-7

https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/custom-ip-core-generation.html
https://www.mathworks.com/help/releases/R2013a/hdlcoder/ug/processor-and-fpga-synchronization.html

R2012b

Version: 3.1

New Features

23

Input parameter constants and structures in floating-point to fixed-
point conversion
Floating-point to fixed-point conversion now supports structures and constant value inputs.

RAM, biquad filter, and demodulator System objects
HDL RAM System object

With release 2012b, you can use the hdlram System object for modeling and generating fixed-point
code for RAMs in FPGAs and ASICs. The hdlram System object provides simulation capability in
MATLAB for Dual Port, Simple Dual Port, and Single Port RAM. The System object also generates RTL
code that can be inferred as a RAM by most synthesis tools.

To learn how to model and generate RAMs using the hdlram System object, see Model and Generate
RAM with hdlram.

HDL System object support for biquad filters

HDL support has been added for the following System object:

• dsp.BiquadFilter

HDL support with demodulator System objects

HDL support has been added for the following System objects:

• comm.BPSKDemodulator
• comm.QPSKDemodulator
• comm.PSKDemodulator
• comm.RectangularQAMDemodulator
• comm.RectangularQAMModulator

Generation of MATLAB Function block in the MATLAB to HDL workflow
You can now generate a MATLAB Function block during the MATLAB to HDL workflow. You can use
the generated block for further design, simulation, and code generation in Simulink.

For details, see MATLAB Function Block Generation.

HDL code generation for Reed Solomon encoder and decoder, CRC
detector, and multichannel Discrete FIR filter
HDL code generation

In R2012b, HDL code generation support has been added for the following blocks:

• General CRC Syndrome Detector HDL Optimized
• Integer-Input RS Encoder HDL Optimized
• Integer-Output RS Decoder HDL Optimized

R2012b

23-2

https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/model-and-generate-rams-with-hdlram.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/model-and-generate-rams-with-hdlram.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/matlab-function-block-generation.html

Multichannel Discrete FIR filters

The Discrete FIR Filter block accepts vector input and supports multichannel implementation for
better resource utilization.

• With vector input and channel sharing option on, the block supports multichannel fully parallel
FIR, including direct form FIR, sym/antisym FIR, and FIRT. Support for all implementation
parameters, for example: multiplier pipeline, add pipeline registers.

• With vector input and channel sharing option off, the block instantiates one filter implementation
for each channel. If the input vector size is N, N identical filters are instantiated.

Applies to the fully parallel architecture option for FIR filters only.

Targeting of custom FPGA boards
The FPGA Board Manager and New FPGA Board Wizard allow you to add custom board information
so that you can use FIL simulation with an FPGA board that is not one of the pre-registered boards.
See FPGA Board Customization.

Optimizations for MATLAB Function blocks and black boxes
The resource sharing optimization now operates on MATLAB Function blocks. For details, see Specify
Resource Sharing.

The delay balancing and distributed pipelining optimizations now operate on black box subsystems.
To learn how to specify latency and enable distributed pipelining for a black box subsystem, see
Customize the Generated Interface.

Generate Xilinx System Generator Black Box block from MATLAB
You can now generate a Xilinx System Generator Black Box block during the MATLAB-to-HDL
workflow. You can use the generated block for further design, simulation, and code generation in
Simulink.

For details, see Xilinx System Generator Black Box Block Generation.

Save and restore HDL-related model parameters
Two new functions, hdlsaveparams and hdlrestoreparams, enable you to save and restore
nondefault HDL-related model parameters. Using these functions, you can perform multiple iterations
on your design to optimize the generated code.

For details, see hdlsaveparams and hdlrestoreparams.

Command-line interface for MATLAB-to-HDL code generation
You can now convert your MATLAB code from floating-point to fixed-point and generate HDL code
using the command-line interface.

To learn how to use the command line interface, open the tutorial:

 IP Core Generation and Hardware Deployment

23-3

https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/what-is-fpga-board-customization.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/specify-resource-sharing.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/specify-resource-sharing.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/customizing-the-generated-interface.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/xilinx-system-generator-black-box-block-generation.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/hdlsaveparams.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/hdlrestoreparams.html

showdemo mlhdlc_tutorial_cli

User-specifiable clock enable toggle rate in test bench
You can now specify the clock enable toggle rate in your test bench to match your input data rate or
improve test coverage.

To learn how to specify your test bench clock enable toggle rate, see Test Bench Clock Enable Toggle
Rate Specification.

RAM mapping for dsp.Delay System object
The dsp.Delay System object now maps to RAM if the RAM mapping optimization is enabled and
the delay size meets the RAM mapping threshold.

To learn how to map the dsp.Delay System object to RAM, see Map Persistent Arrays and dsp.Delay
to RAM.

Code generation for Repeat block with multiple clocks
You can now generate code for the DSP System Toolbox Repeat block in a model with multiple clocks.

Automatic verification with cosimulation using HDL Coder
With the HDL Coder HDL Workflow Advisor, you can automatically verify using your Simulink test
bench with the new verification step Run Cosimulation Test Bench. During verification, the HDL
Workflow Advisor and HDL Verifier verify the generated HDL using cosimulation between the HDL
Simulator and the Simulink test bench. See Automatic Verification in the HDL Verifier documentation.

ML605 Board Added To Turnkey Workflow
The Xilinx Virtex-6 FPGA ML605 board has been added for Turnkey Workflow in the HDL Workflow
Advisor.

R2012b

23-4

https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/test-bench-clock-enable-toggle-rate-specification.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/test-bench-clock-enable-toggle-rate-specification.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/how-to-map-persistent-arrays-to-ram.html
https://www.mathworks.com/help/releases/R2012b/hdlcoder/ug/how-to-map-persistent-arrays-to-ram.html

R2012a

Version: 3.0

New Features

Compatibility Considerations

24

Product Name Change and Extended Capability
HDL Coder replaces Simulink HDL Coder and adds the HDL code generation capability directly from
MATLAB.

To generate HDL code from MATLAB, you need the following products:

• HDL Coder
• MATLAB Coder
• Fixed-Point Toolbox™
• MATLAB

To generate HDL code from Simulink, you need the following products:

• HDL Coder
• MATLAB Coder
• Fixed-Point Toolbox
• Simulink Fixed Point™
• Simulink
• MATLAB

Code Generation from MATLAB
You can now generate HDL code directly from MATLAB code.

This workflow provides:

• Verilog or VHDL code generation from MATLAB code.
• Test bench generation from MATLAB scripts.
• Automated conversion from floating point code to fixed point code.
• Automated HDL verification through integration with ModelSim and ISim.
• HDL code generation for a subset of System objects from the Communications Toolbox and DSP

System Toolbox.
• A traceability report mapping generated HDL code to your original MATLAB code.

The MATLAB to HDL workflow provides the following automated HDL code optimizations:

• Area optimizations: RAM mapping for persistent array variables, loop streaming, resource
sharing, and constant multiplier optimization.

• Speed optimizations: input pipelining, output pipelining, and distributed pipelining.

The coder can also generate a resource utilization report, with RAM usage and the number of adders,
multipliers, and muxes in your design.

See also HDL Code Generation from MATLAB.

R2012a

24-2

https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/bta01v0.html

Code Generation from Any Level of Subsystem Hierarchy
You can now generate HDL code from a subsystem at any level of the subsystem hierarchy. In
previous releases, you could generate HDL code from the top-level subsystem only.

This feature also enables you to check any level subsystem for code generation compatibility, and to
automatically generate a testbench.

Automated Subsystem Hierarchy Flattening
You can now generate code with a flattened subsystem hierarchy, while preserving hierarchy in
nested subsystems.

This option enables you to perform more extensive area and speed optimization on the flattened
component. It also enables you to reduce the number of HDL output files.

See also Hierarchy Flattening.

Support for Discrete Transfer Fcn Block
You can now generate HDL code from the Discrete Transfer Fcn block.

For details, see Discrete Transfer Fcn Requirements and Restrictions.

User Option to Constrain Registers on Output Ports
A new property, ConstrainedOutputPipeline, enables you to specify the number of registers you
wish to have on an output port without introducing additional delay on the input to output path. The
coder redistributes existing delays within your design to try to meet the constraint. This behavior is
different from the OutputPipeline property, which introduces additional delay on the input to
output path.

If the coder is unable to meet the constraint using existing delays, it reports the difference between
the number of desired and actual output registers in the timing report.

Distributed Pipelining for Sum of Elements, Product of Elements, and
MinMax Blocks
The Sum of Elements, Product of Elements, and MinMax blocks can now participate in distributed
pipelining if their architecture is set to Tree.

MATLAB Function Block Enhancements
Multiple Accesses to RAMs Mapped from Persistent Variables

You can now perform multiple reads and writes to a persistent variable, and the persistent variable
will still be mapped to RAM. In previous releases, a RAM mapped from a persistent variable could be
accessed only once.

 IP Core Generation and Hardware Deployment

24-3

https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdbbiu.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/bsmj7i0-1.html#btei_bh

Streaming for MATLAB Loops and Vector Operations

You can now perform streaming on MATLAB loops and loops created from vector operations for
improved area efficiency.

For details, see Loop Optimization.

Loop Unrolling for MATLAB Loops and Vector Operations

You can now unroll user-written MATLAB loops and loops created from vector operations. This
enables the coder to perform area and speed optimizations on the unrolled loops.

For details, see Loop Optimization.

Automated Code Generation from Xilinx System Generator for DSP
Blocks
You can now automatically generate HDL code from subsystems containing Xilinx System Generator
for DSP blocks.

For details, see Code Generation with Xilinx System Generator Subsystems.

Altera Quartus II 11.0 Support in HDL Workflow Advisor
The HDL Workflow Advisor has now been tested with Altera Quartus II 11.0. In previous releases, the
HDL Workflow Advisor was tested with Altera Quartus II 9.1.

Automated Mapping to Xilinx and Altera Floating Point Libraries
The coder can now map Simulink floating point operations to synthesizable floating point Altera
Megafunctions and Xilinx LogiCORE IP Floating Point Operator v5.0 blocks. To learn more, see FPGA
Target-Specific Floating-Point Library Mapping.

For a list of supported Altera Megafunction blocks, see Supported Altera Floating-Point Library
Blocks.

For a list of supported Xilinx LogicCORE IP blocks, see Supported Xilinx Floating-Point Library
Blocks.

Vector Data Type for PCI Interface Data Transfers Between xPC Target
and FPGA
In the FPGA Turnkey workflow, you can now use vector data types with the Scalarize Vector Ports
option to automatically generate PCI DMA transfers on the PCI interface between xPC Target and
FPGA. You no longer need to manually insert multiplexers, demultiplexers and provide
synchronization logic for vector data transfers.

If the Scalarize Vector Ports option is disabled when the code generation subsystem has vector
ports, the coder displays an error.

R2012a

24-4

https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdowon-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdowon-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btel3j3.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btd0dus-1
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btd0dus-1
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btdzecc-1
https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/btdyu2l.html#btdzecc-1

New Global Property to Select RAM Architecture
There is a new global property, RAMArchitecture, that enables you to generate RAMs either with or
without clock enables. This property applies to every RAM in your design, and replaces the block
level property, RAMStyle. By default, RAMs are generated with clock enables.

To generate RAMs without clock enables, set RAMArchitecture to 'WithoutClockEnable'. To
generate RAMs with clock enables, either use the default, or set RAMArchitecture to
'WithClockEnable'. For more information, see Implement RAMs With or Without Clock Enable.

Compatibility Considerations
The coder now ignores the block level property, RAMStyle.

If a block’s RAMStyle property is set, the coder generates a warning.

Turnkey Workflow for Altera Boards
HDL Workflow Advisor now supports Altera FPGA design software and the following Altera
development kits and boards:

• Altera Arria II GX FPGA development kit
• Altera Cyclone III FPGA development kit
• Altera Cyclone IV GX FPGA development kit
• Altera DE2-115 development and education board

This workflow has been tested with Altera Quartus II 11.0.

HDL Support For Bus Creator and Bus Selector Blocks
Release R2012a provides HDL code generation for the Bus Creator and Bus Selector blocks. You must
use these blocks for your buses if you want HDL support.

HDL Support For HDL CRC Generator Block
Release R2012a provides HDL code generation for the new HDL CRC Generator block.

HDL Support for Programmable Filter Coefficients
When using filter blocks to generate HDL code, you can specify coefficients from input port(s). This
feature applies to FIR and BiQuad filter blocks only. Fully Parallel and all serial architectures are
supported.

Follow these directions to use programmable filters:

1 Select Input port(s) as coefficient source from the filter block mask.
2 Connect the coefficient port with a vector signal.
3 Specify the implementation architecture and parameters from the HDL Coder property interface.
4 Generate HDL code.

 IP Core Generation and Hardware Deployment

24-5

https://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/brrdj5v-1.html#br7j5tp

Notes

• For fully parallel implementations, the coefficients ports are connected to the dedicated MAC
directly.

• For serial implementation, the coefficients ports first go to a mux, and then to the MAC. The mux
decides the coefficients that used at current time instant

• For Discrete FIR filters, this feature is not supported under the following conditions:

• Implementations having coefficients specified by dialog parameters (for example, complex
input and coefficients with serial architecture)

• Filters using DA architecture
• CoeffMultipliers specified as csd or factored-csd

• For Biquad filters, this feature is not supported when CoeffMultipliers are specified as csd or
factored-csd.

Synchronous Multiclock Code Generation for CIC Decimators and
Interpolators
You can specify multiple clocks in one of the following ways:

• Use the model-level parameter ClockInputs with the function makehdl and specify the value as
'Multiple'.

• In the Clock settings section of the Global Settings pane in the HDL Code Generation
Configuration Parameters dialog box, set Clock inputs to Multiple.

When you use single-clock mode, HDL code generated from multirate models uses a single master
clock that corresponds to the base rate of the DUT. When you use multiple-clock mode, HDL code
generated from multirate models use one clock input for each rate in the DUT. The number of timing
controllers generated in multiple-clock mode depends on the design in the DUT.

The ClockInputs parameter supports the values 'Single' and 'Multiple', where the default is
'Single'. In the default single-clock mode, the coder behavior is unchanged from previous releases.

Filter Block Resource Report Participation
Resource reports include the HDL resource usage for filter blocks. The report includes adders,
subtractors, multipliers, multiplexers, registers. This feature covers all filter blocks, and all
implementations for the block.

You can turn on the report feature using the command line (ResourceReport) or GUI (Generate
resource utilization report). The following illustrations show a report for a model that includes a
Discrete FIR Filter block.

R2012a

24-6

HDL Block Properties Interface Allows Choice of Filter Architecture
You can choose from several filter architectures for FIR Decimation and Discrete FIR Filter blocks.
Choices are:

• Fully Parallel
• Distributed Architecture (DA)
• Fully Serial

 IP Core Generation and Hardware Deployment

24-7

• Party Serial
• Cascade Serial

The availability of architectures depends on the transfer function type and filter structure of filter
blocks. For Partly Serial and DA, specify at least SerialPartition and DALUTPartition, respectively,
so that these architectures are inferred. For example, if you select Distributed Architecture
(DA), make sure to also set DALUTPartition.

HDL Support for FIR Filters With Serial Architectures and Complex
Inputs
HDL support for serial implementations of a FIR block with complex inputs.

HDL Support for External Reset Added for Proportional-Integral-
Derivative (PID) and Discrete Time Integrator (DTI) Blocks
External reset support added for level mode.

R2012a

24-8

	R2023a
	Model and Architecture Design
	Use native floating point and vendor-specific floating point in same design
	Support for external timing controller in single clock input mode
	Check if DUT pin count exceeds I/O threshold
	Generate record types for array of buses
	Enhanced code generation of 3-D matrices for Simulink blocks
	Code generation for 2-D and 3-D matrices in MATLAB-to-HDL workflow
	HDL Coder in MATLAB Online

	Block Enhancements
	Support for index output port in For Each block in For Each Subsystem block
	Optimization support for Tapped Delay blocks with large delay lengths
	Improved optimization compatibility for CORDIC operations
	Use vector, matrix, and bus inputs in HDLMathLib blocks
	Enable and reset ports for Tapped Delay blocks
	Support for sample time inside triggered subsystems
	HDL code generation for Inherit Complexity block
	Convert word to bits and bits to word
	Improved code generation for Multiport Switch block
	Functionality being removed or changed

	Code Generation and Verification
	Infinite samples times resolve to discrete rates during HDL code generation
	Generate test bench simulation scripts for Xilinx Vivado Simulator
	Improved back-annotation in HDL Workflow Advisor
	Check model parameters for unconnected ports and lines
	New layout and added functionalities for MATLAB to HDL workflow
	Line buffer interface support for MATLAB to SystemC Workflow

	Speed and Area Optimizations
	Distributed pipelining applies through subsystem hierarchy by default
	Specify two RAM mapping thresholds to define shape of mapped data
	Use delay absorption in feedback loops and conditional subsystems
	Unique global scheduling counters for clock-rate pipelining

	I/O Optimizations
	Output statistical characteristics when generating HDL code from frame-based algorithms
	Switch between row-major and column-major ordering when generating code from frame-based algorithms
	Map large delays to external ports when generating code from a frame-base algorithm

	IP Core Generation and Hardware Deployment
	External memory access when generating an IP core from a frame-based algorithm
	Map matrix ports to AXI4-Stream video interfaces
	Generate HDL IP core using generic platform
	Define Custom Board and Reference Design for Microchip Pure FPGA Platform
	Set target frequency for Microchip boards in Generic FPGA and ASIC workflow
	Upgrade to Xilinx Vivado 2022.1
	Upgrade to Intel Quartus Standard 21.1
	Upgrade to Microchip Libero SoC 2022.1
	Support for greater than 32-bit widths and double data types on AXI4 slave interfaces
	Prototype FPGA designs that access memory using the AXI4 master interface from MATLAB
	Program FPGA from MATLAB using generated host interface script

	Simscape Hardware-in-the-Loop Workflow
	Optimal value of sharing factor for Simscape models
	Support for Simulink-PS Converter block with input filtering using Partitioning and Trapezoidal Rule solver
	Specify target hardware settings in Simscape HDL Workflow Advisor
	Enhancements in HDL code generation for tablelookup function
	Support for Simscape models containing real-valued modes
	Support for Trapezoidal Rule solver
	Support for real-valued event variables

	R2022b
	Model and Architecture Design
	Max number of I/O pins for FPGA deployment
	Generate record types for bus
	Improved 3-D array code generation
	HDL Coder in Simulink Online

	Block Enhancements
	Enable clock-driven outputs for Moore Stateflow charts
	Model Clock and Reset signal using triggered and resettable subsystem
	Half and double data type support for Simulink blocks
	Reciprocal square root block in HDL Math Library
	Support for nonzero initial values of output ports in controlled subsystems
	Generate HDL code with all Variant Choices from Variant Subsystem

	Code Generation and Verification
	Highlight dead blocks removed in generated code
	Improved generated HDL code for enumerated data used in a Stateflow chart
	Cosimulation workflow support for Vivado simulator
	Support for any order of enumerated types in Stateflow charts

	Speed and Area Optimizations
	HDL code generation from frame-based algorithms
	MATLAB-to-HDL optimization improvements
	Simplified distributed pipelining workflow for DUT with subsystem hierarchy
	Required oversampling factor reported in clock-rate pipelining error messages
	Reduce matching delays for stable inputs and test point outputs
	Enhanced delay absorption
	Clock-rate pipelining support for rate transition blocks in multi-rate designs
	Synchronize clock-rate pipelining of output ports with a valid signal interface
	Enhancements in Multicycle Path (MCP) constraints generation
	Optimize generated SystemC code by using pragmas in MATLAB code

	IP Core Generation and Hardware Deployment
	Map complex vector, matrix, and complex matrix ports to AXI4-Stream interfaces
	Mixed HDL languages for black box subsystem in IP Core Generation workflow
	Generate Board-Independent HDL IP Core for Microchip Platform
	Upgrade to Intel Quartus Prime Pro 21.3
	Upgrade to Cadence Stratus HLS 21.2
	Support DSP58 architecture for Xilinx Versal Devices
	AXI manager in HDL Workflow Advisor supports Ethernet connection for Xilinx boards
	FPGA data capture in HDL Workflow Advisor supports Ethernet connection for Xilinx boards
	FPGA data capture in HDL Workflow Advisor supports capture condition logic
	Define Custom Board and Reference Design for Microchip Platform
	Functionality being removed or changed

	Simscape Hardware-in-the-Loop Workflow
	Optimal value of solver iterations for nonlinear Simscape models
	Optimization of mapping mode vector to index subsystem to achieve higher clock frequency for nonlinear Simscape networks
	Simscape to HDL Workflow Reference Applications
	HDL code generation support for Simscape tablelookup function
	HDL code generation from Simulink-PS Converter block with input filtering
	HDL code generation from PS-Simulink Converter block with unit conversion
	HDL code generation support for Simscape integer-valued events and mode charts
	HDL code generation support for Simscape converter blocks with averaged switches
	Clock-rate pipelining optimization enhancements for HDL code generation from Simscape models

	R2022a
	Model and Architecture Design
	HDL optimized arithmetic operations
	Additional functions for MATLAB function blocks that have MATLAB Datapath architecture
	Counter reuse from serialization
	Changes in HDL coding standards
	Enhanced HDL Model Advisor checks

	Block Enhancements
	Option for preserving logic connected to Terminator block
	MinMax block streaming and min and max function vector inputs
	If and Switch Case Action blocks support
	HDL code generation for variable integer Delay block
	HDL Property 'RAMDirective' for HDL FIFO block
	HDL Block Property 'AsyncRTAsWire' added for Rate Transition block
	Local Reset Port for HDL FIFO block
	For-Generate loops for Selector block
	n-Dimensional lookup table
	Enhancements in trigonometric blocks that use CORDIC-based approximation method
	Enhancements in HDL Math library blocks
	Improved HDL code generation for Serializer1D and Deserializer1D blocks
	Matrix types support for design under test (DUT)
	Shift-Add architecture for reciprocal function in Math Function Block
	Logic guarding index access preservation

	Code Generation and Verification
	Clock frequency specification in MATLAB to HDL Workflow Advisor
	Indexing for scalarized port naming
	Generation of traceability report in Japanese language
	Improved critical path estimation
	Enhancements to the genhdltdb function
	Out-of-bounds error suppression during ModelSim simulation
	SystemC Code Generation from MATLAB Code

	Speed and Area Optimizations
	Streaming and sharing area optimization improvements
	Synthesis timing estimates for distributed pipelining
	Adaptive Pipelining for MATLAB to HDL Workflow
	Automatic iterative optimization by using critical path estimation
	Optimizations support for Counter blocks
	Hierarchical clock-rate pipelining improvements

	IP Core Generation and Hardware Deployment
	HDL Coder Support for Xilinx Versal Devices: Generate IP core and deploy reference designs on Xilinx Versal devices
	HDL Coder Support Package for Microchip FPGA and SoC Devices: Generate IP core and deploy reference designs on Microchip FPGA and SoC devices
	Reference design workflow for Microsemi Libero SoC
	HDL IP core on the Microchip PolarFire SoC Icicle kit
	FPGA and SoC hardware object and FPGA programming workflow
	ID signals in AXI4 Master Interface in IP core generation workflow
	Readback of AXI4 registers for the individual ports in HDL Workflow Advisor
	Supported FPGA synthesis tools
	Half-Precision data types for AXI4 interfaces in IP core generation workflow
	Single-Precision data types for AXI4 stream interface in IP core generation workflow
	Automated workflow to access memory-mapped locations on FPGA using HDL Workflow Advisor
	Xilinx Zynq Linux image for Zynq custom boards
	Functionality being removed or changed

	Simscape Hardware-in-the-Loop Workflow
	Optimal value of oversampling factor for nonlinear Simscape models
	Optimization of mode vector to index subsystem for higher clock frequency
	Simscape to HDL Workflow Reference Applications

	R2021b
	Model and Architecture Design
	RAM style attributes for Intel/Altera and Microchip
	HDL code check for trigonometric blocks
	Timestamp macro in custom file header comments
	Enhanced multiple enumeration in Verilog
	HDL Industry Coding Standard check for the presence of assignments to the same variable in multiple cascaded conditional regions
	Layout choices for model generation

	Block Enhancements
	Newton-Raphson algorithm for Math Reciprocal block
	Magnitude square function in Math Function block
	Half-precision data types for MATLAB Function block
	Double-Precision data types for Logarithmic block
	For-Generate loops for Reshape and Concat blocks
	Fixed-point output types for Divide block and Reciprocal block
	Enhanced HDL math library
	4-D and 5-D lookup table support
	Improved denormal optimizations for half-precision data types
	Improved multiplier partitioning DSP QoR
	Reset minimization in Native Floating-Point (NFP) for ASIC
	Set-Reset (SR) flip-flops
	HDL Code Generation for Discrete State-Space block
	Trigger and event modes for subsystems, MATLAB Function blocks, and Stateflow blocks
	Wireless HDL Toolbox Reference Applications: Implement 5G NR SIB1 recovery, WLAN receiver, and DVB-S2 PL header recovery
	Wireless HDL Toolbox Blocks: Model WLAN LDPC decoder, CCSDS RS decoder, DVBS2 symbol demodulator, and APP decoder
	Multipixel-Multicomponent Video Streaming: Implement color space conversion and demosaic interpolation algorithms for high-frame-rate color video
	Reflection Padding: Pad image frames by reflecting around the edge pixel

	Code Generation and Verification
	Code View: View your generated HDL code directly in Simulink model window
	Stateflow multicycle path enhancements
	Register-to-register path info option not recommended in HDL Coder
	Execute chart at initialization option for Stateflow charts
	HDL code generation performance improvement for matrix multiplication

	Speed and Area Optimizations
	Enhanced sharing and streaming optimizations for matrix-types
	User control for tunable parameter processing and improve code generation time
	Improved zero-protection in Simulink-to-HDL
	Minimize intermediate initialization of variables in generated HDL code
	Improved optimizations for conditional subsystems
	Delay-balancing behavior standardization in BalanceDelays=off network
	Lookup Table blocks mapping to RAM and adaptive pipelining

	IP Core Generation and Hardware Deployment
	Microsemi Libero System On A Chip (SoC) support for IP core generation workflow
	MATLAB Prototyping API Enhancements: Support complex data in AXI4 Stream Interface and input register readback in AXI4 Interface
	Upgrade to Intel Quartus Pro 20.2
	Inserted JTAG AXI Master at fixed frequency to avoid timing issue
	Unsupported tool version in HDL workflow advisor
	Multicycle path constraint packaging for IP core
	HDL Coder Workflow Advisor: Option to expose DUT clock enable port and clock enable output port
	Devicetree generation for IP cores
	Updates to addAXI4StreamInterface function for fpga hardware connection object
	Reset AXI4-Stream TLAST counter
	HDL Coder Workflow Advisor: Improved code generation times
	HDL Coder Workflow Advisor: Resource and timing report enhancement
	Data type for Speedgoat PCIe Interface: Map bus data types to Speedgoat PCIe Interface
	HDL Coder Support Package for Xilinx RFSoC Devices: Generate IP core and deploy reference designs on Xilinx RFSoC devices

	Simscape Hardware-in-the-Loop Workflow
	Support multiple solver times in Simscape models
	Enable FPGA parameters in the protected model
	RAM mapping for partition solver

	R2021a
	Model and Architecture Design
	Half precision floating-point example for Field-Oriented Control algorithm
	Comments tab in Global Settings pane and option to disable comments
	HDL Code Advisor check for file extension based on target language
	Hard Floating Point Support using Intel Quartus Pro

	Block Enhancements
	Enhancement to parameterized HDL code generation for 1-D and 2-D mask values
	HDL code generation for For Each Subsystem block with 1-D and 2-D partitioning of mask parameters
	HDL code generation for For Each Subsystem block with matrix ports
	HDL code generation for Interval blocks and additional Detect blocks
	ShiftAdd architecture for Product block to avoid DSP consumption
	HDL Coder library for fixed-point mathematical function blocks with latency
	Count hit port for HDL Counter block to indicate when count value resets
	3-D lookup table support
	HDL Code Generation for Data Type Conversion block supports enumerated data types
	Enhancement to HDL code generation for Sqrt block
	New HDL-optimized Simulink blocks for reciprocal, divide, and modulo
	Reduced HDL resource utilization in fixed-point matrix library blocks
	Wireless HDL Toolbox Reference Applications: Implement 5G NR MIB recovery for FR2, OFDM interleaver and deinterleaver, and WLAN time and frequency synchronization
	Wireless HDL Toolbox Blocks: Model OFDM Equalizer, NR CRC Encoder, and NR CRC Decoder
	External Memory Modeling Examples: Model and deploy streaming video algorithms that require random access to memory (requires SoC Blockset product)
	Multipixel-Multicomponent Video Streaming: Implement Pixel Stream Aligner, Pixel FIFO, and ROI Selector blocks for high-frame-rate color video
	Functionality being removed or changed

	Code Generation and Verification
	Improvement to HDL code generated for Stateflow Moore Chart blocks
	Stateflow Chart property Initialize Outputs Every Time Chart Wakes Up cleared for HDL code generation
	HDL block property GenericList for Subsystem blocks with BlackBox architecture
	Single file for identical Simulink systems (Atomic and Virtual)

	Speed and Area Optimizations
	Improved delay balancing support for multiple instances of atomic subsystems
	Improved streaming in presence of scalar expanded constants
	Enhancement to optimization that removes redundant logic for atomic subsystems and model references
	Enhancement to sharing optimization for matrix data types
	Adaptive pipelining optimization disabled on model by default
	Generation of target-specific timing databases for critical path estimation

	IP Core Generation and Hardware Deployment
	Updates to supported software
	Data Type Support for AXI4 Slave: Map bus data types to AXI4 slave interfaces in IP Core generation
	HDL Workflow Advisor Enhancements
	FPGA Data Capture in HDL Workflow Advisor supports sequential trigger
	FPGA Data Capture integration with IP Core Generation workflow for generic Xilinx and generic Intel targets
	Multirate IP Core Generation: Support AXI4-Stream interface on slower-rate DUT ports
	Complex data type on AXI4-Stream data port
	High Bandwidth AXI Stream: Generate IP cores that have bit-widths greater than 128 bits on AXI4-Stream data ports
	Generation of HDL IP cores that have greater than 128 bits on external IO interfaces and external ports
	Interface option to customize initial value of AXI4 Master and AXI4 Stream registers

	Simscape Hardware-in-the-Loop Workflow
	Partitioning solver: Use partitioning solver to generate HDL code from nonlinear models
	Optimal value of oversampling factor automatically set on HDL implementation model

	R2020b
	Model and Architecture Design
	Half-Precision Native Floating Point: Generate target-independent synthesizable RTL code from half-precision floating-point models
	HDL code generation for lookup tables that have floating-point types
	HDL Code Advisor check for blocks that introduce latency with fixed-point types
	Automatically package protected models with their dependencies

	Block Enhancements
	Optimized Square Root: Generate high-frequency fixed-point HDL implementation of square root operations
	Custom latency for math and trigonometric blocks with fixed-point types
	Modulo option for HDL Counter block
	HDL code generation for Scoped tag visibility for Goto block
	Product block enhancements for HDL code generation
	5G NR HDL MIB Recovery Reference Application: Implement 5G NR MIB recovery subsystem on FPGA or ASIC
	OFDM Transmitter and Receiver Reference Applications: Implement custom OFDM wireless communication system on FPGA or ASIC
	HDL-optimized FIR Decimation block and System object: Downsample signals using a FIR decimation filter with a hardware-friendly interface and architecture
	Gigasample-per-second (GSPS) CIC Decimation HDL-Optimized Block: Increase throughput of CIC decimation by using frame-based input
	Corner Detector Block and System Object: Detect features using Harris algorithm
	Region of Interest (ROI) Resource Sharing: Share hardware resources and streaming control signals between vertically aligned regions
	Blob Analysis Example: Detect and label connected components in streaming video
	HDL Minimum Resource FFT and HDL Streaming FFT blocks have been removed

	Code Generation and Verification
	Option to scalarize vector ports only at DUT level in VHDL code
	HDL code generation for models that have comment through blocks
	HDL code generation for models that have Subsystem Reference blocks
	Enhancement to HDL code generation for nontop DUT
	HDL code generation for nonboolean inputs at control ports
	HDL code generation for absolute time temporal logic in Stateflow
	Default HDL simulation command vsim -novopt has changed to vsim -voptargs=+acc
	UseMatrixTypesInHDL property not recommended

	Speed and Area Optimizations
	Option to control removal of unused ports in generated HDL code
	Hierarchy flattening report
	Optimization enhancements for Sum of Elements and MinMax blocks

	IP Core Generation and Hardware Deployment
	Rapid prototyping of HDL IP core by using software interface script
	Interface option to customize initial value of AXI4 slave registers
	Generation of HDL IP cores that have greater than 128 bits on internal IO interface
	IP core generation workflow for scalarization of vector ports only at DUT level in VHDL code
	Intel Quartus Pro SoC Targeting: Generate generic HDL IP core or integrate IP core into Intel reference designs
	Arria 10 SoC AXI4 Slave reference design
	Speedgoat I/O Modules IO331 and IO333 being removed
	Audio filter reference application for Intel SoC device
	Updates to supported software

	Simscape Hardware-in-the-Loop Workflow
	Automatic replacement of Simscape subsystem with state-space implementation
	Automatic setting of number of solver iterations in Simscape HDL Workflow Advisor
	Mapping of state-space parameters to RAM in HDL implementation model
	Duplicate configurations removed in generated HDL implementation model

	R2020a
	Model and Architecture Design
	Additional HDL modeling guidelines added to documentation
	Functionality being removed or changed

	Block Enhancements
	Inverse of streaming matrix input using Gauss-Jordan elimination method
	Improvement to readability of bus element port names in HDL code
	New Fixed-Point Designer Simulink block library
	LTE HDL Toolbox name change to Wireless HDL Toolbox
	5G NR Signal Synchronization Reference Application: Use primary and secondary synchronization signals (PSS and SSS) to detect connection to valid cell
	5G NR Polar Encoder and Decoder, 5G NR LDPC Encoder and Decoder blocks
	OFDM Modulator, OFDM Channel Estimator, and RS Decoder blocks
	Variable CIC Decimation Factor: Specify decimation factor as an input to the CIC Decimation HDL Optimized block
	Gigasample-per-second (GSPS) NCO: Generate frame-based output from HDL-optimized NCO for high speed applications (requires HDL Coder for code generation)
	Corner Detector Block and System Object: Detect features using FAST algorithm
	Line Buffer with No Padding: Specify option to not add padding for blocks that use line buffer memory

	Code Generation and Verification
	Obfuscated HDL Output: Generate plain-text HDL code with randomized identifier names
	Improvements to HDL code generated for Stateflow charts

	Speed and Area Optimizations
	Upsampling signals without latency using Rate Transition blocks

	IP Core Generation and Hardware Deployment
	AXI4-Stream for MIMO: Generate IP cores with multiple input and output channels
	High-Bandwidth AXI Master: Generate IP cores with up to 512 bits on AXI4 Master data ports
	Performance improvement to AXI4 Master write operations
	Dynamic customization of reference design based on reference design parameters
	Option to insert JTAG MATLAB AXI Master in standalone FPGA reference designs (requires HDL Verifier)
	socExportReferenceDesign Function: Automatically create reference design (requires SoC Blockset)
	Intel Quartus Pro Targeting: Synthesize and implement generated HDL code on Intel FPGAs by using HDL Workflow Advisor
	Speedgoat IO Modules IO331 and IO331-6 being removed
	Updates to supported software

	Simscape Hardware-in-the-Loop Workflow
	Simscape Hardware-in-the-Loop: Generate HDL implementation model from multiple Simscape networks
	Reduction in latency of HDL implementation model generated from Simscape algorithm
	Improvement to single-rate resource sharing in HDL implementation model

	R2019b
	Model and Architecture Design
	HDL code generation for MATLAB Function block in native floating-point mode
	HDL Coder contextual tab on Simulink Toolstrip
	Documentation revision for HDL code generation support for blocks

	Block Enhancements
	Discrete FIR Filter HDL Optimized block supports complex coefficient values
	Process high-frame-rate or high-resolution video with multipixel streaming interface
	OFDM Demodulator, Convolutional Encoder, and Puncturer blocks for custom wireless communication protocols
	Symbol Demodulator and 1536-point FFT for LTE and NR (5G) designs
	HDL-optimized CIC Decimation block and System Object
	Enhancements to fixed-point Division and Reciprocal operators
	FWFT mode for HDL FIFO block
	HDL code generation enhancements to matrix support
	Block-level option to control HDL code generated for Multiport Switch block
	HDL code generation for partitioning of mask parameters in For Each Subsystem
	HDL code generation for Fcn block

	Code Generation and Verification
	UltraRAM mapping in Xilinx devices

	Speed and Area Optimizations
	Enhanced optimization support for MATLAB Function block
	HDL optimizations across MATLAB Function blocks and other Simulink blocks
	Flattening of subsystems in presence of optimizations

	IP Core Generation and Hardware Deployment
	Optimization of AXI4 slave readback logic
	Customization of AXI4 Slave ID width in Generic IP Core Generation workflow
	Option to insert JTAG MATLAB AXI Master in SoC reference designs (requires HDL Verifier)
	Performance improvement to AXI Master interfaces in HDL DUT IP core
	Updates to supported software

	Simscape Hardware-in-the-Loop Workflow
	Enhanced HDL implementation model for Simscape and Simulink plant in feedback loop
	Number display of differential and algebraic variables in Simscape HDL Workflow Advisor
	Separation of Get state-space parameters task for extracting and discretizing equations
	Generation of implementation model with coefficients as single type and computation of results in double type

	R2019a
	Model and Architecture Design
	Protected Model Code Generation: Share protected Simulink models with the option to allow HDL code generation
	Enhancements to single-precision native floating-point operators support
	Additional block support with double-precision native floating-point code generation
	Additional Verilog constructs supported with HDL import
	HDL Coder contextual tab in Simulink Toolstrip
	HDL Coder Modeling Guidelines in Documentation

	Block Enhancements
	Streaming Matrix Multiply and Streaming Matrix Inverse Reference Applications
	Partition Offset parameter support in For Each Subsystem block
	Enhancements to Assignment and Selector blocks
	Enhancements to Discrete FIR Filter HDL Optimized block and frame-based Discrete FIR Filter block
	LTE Reference Applications: Transmitter example and TDD support for SIB recovery
	OFDM Modulator block and LTE and 5G Symbol Modulator blocks
	Increased kernel size limits for Image Filter block

	Code Generation and Verification
	Customization of constant name in VHDL code generated for Lookup Table data
	Optimized counters in generated HDL code for Stateflow temporal logic
	HDL Coder Workflow: Enhanced options for model generation
	HDL Code Generation: Diagnostics tab renamed to Advanced

	Speed and Area Optimizations
	Improvements to element-wise matrix transformation
	Optimization of unconnected port for removing redundant logic in design

	IP Core Generation and Hardware Deployment
	DUT AXI4 slave interface connection to multiple AXI Master interfaces in reference designs
	Default system with External DDR4 Memory Access reference design
	Generation of HDL IP core without AXI4 slave interfaces
	Improved synchronization of global reset signal to IP core clock domain
	Minimization of clock enable signals in IP Core Generation workflow
	Updates to supported software

	Simscape Hardware-in-the-Loop Workflow
	Double-precision floating-point support for HDL code generation from Simscape models
	Validation logic verification for functional equivalence of HDL implementation model with Simscape model
	Simscape to HDL Workflow Reference Applications

	R2018b
	Model and Architecture Design
	Verilog Import: Import synthesizable Verilog code and generate Simulink model
	Double-Precision Native Floating Point: Generate target-independent synthesizable RTL from double-precision floating-point models
	Custom latency specification for native floating-point operators
	Enhancements to supported blocks and complex data types with single-precision native floating-point
	Enhancements to output delay absorption for complex multipliers with single-precision native floating-point

	Block Enhancements
	Enhancements to matrix support for HDL code generation
	HDL code generation support for Probe block and blocks that detect change in input signal value
	HDL code generation support for Foreach Subsystem with Minimize global resets setting
	HDL Coder support for virtual bus containing nonvirtual subbus
	Viterbi Decoder and Depuncturer Block: Decode bitstreams by using the Viterbi algorithm with puncturing, terminated, and truncated modes (requires LTE HDL Toolbox)
	HDL code generation support for complex input signals or complex coefficients of frame-based Discrete FIR Filter and FIR Decimation blocks (requires DSP System Toolbox)
	Discrete FIR Filter HDL Optimized: Select transposed architecture, optimize symmetric and antisymmetric coefficients, and enable reset port (requires DSP System Toolbox)

	Code Generation and Verification
	Test Point Integration with FPGA Data Capture: Use FPGA data capture to specify signals to be captured during FPGA testing by using Test Points in Simulink
	User-Interface Improvements to HDL Workflow Advisor and HDL Code Generation Pane in Configuration Parameters Dialog Box

	Speed and Area Optimizations
	Enhancements to optimization that removes redundant logic in design
	Streaming operation modes of Multiply-Accumulate block
	Different output latencies for designs with clock-rate pipelining enabled at output ports

	IP Core Generation and Hardware Deployment
	Xilinx Zynq UltraScale+ MPSoC Targeting: Select from predefined targets and reference designs to generate code for MPSoC devices
	Multirate IP Core Generation: Target AXI4-Stream and AXI4 Master interfaces for designs with multiple sample rates
	PCIe MATLAB as AXI Master with External DDR4 Memory Access reference design for Intel Arria10 GX FPGA Development kit
	Timing failure check in Build FPGA Bistream step of IP Core Generation workflow
	Support for read back of AXI4 write registers in IP Core Generation workflow
	Microsemi Libero SoC Targeting: Synthesize and implement generated code on Microsemi FPGAs by using HDL Workflow Advisor
	Speedgoat IO Modules IO321 and IO321-5 being replaced
	Updates to supported software

	Simscape Hardware-in-the-Loop Workflow
	Hardware Acceleration of Plant Models: Generate HDL code from Simscape Electrical switched linear models

	R2018a
	Model and Architecture Design
	HDL Model Checker integrated with Model Advisor
	Updates to model checks in HDL Coder
	Enhanced Radix-4 algorithm for Divide and Reciprocal blocks in Native Floating Point mode
	Improved shift-and-add algorithm for exponential and hyperbolic functions in Native Floating Point mode
	HDL code generation support for all rounding modes of Data Type Conversion block in Native Floating Point mode
	Floating-point control for Multiport Switch and Selector blocks

	Block Enhancements
	Matrix Support: Generate HDL code directly from two-dimensional matrix data types and operations
	Additional blocks and block modes supported for HDL code generation
	Bit-Natural FFT Output: Directly access the bit-natural output from the frame-based FFT/IFFT (Requires DSP System Toolbox)
	LTE OFDM demodulation and Gold sequence generation blocks (Requires LTE HDL Toolbox)
	Additional pipelining of HDL-optimized Complex to Magnitude-Angle (Requires DSP System Toolbox)
	5G filtered-OFDM modulation reference application (Requires LTE HDL Toolbox)

	Code Generation and Verification
	Line-Level Traceability: Navigate directly between Simulink blocks and corresponding lines of generated HDL code
	Microsemi FPGA Support: Specify Microsemi Libero SoC as Synthesis Tool and generate HDL code
	Concise summary of synthesis results displayed in HDL Workflow Advisor
	New Code Generation Report: View more information and navigate through code generation results more easily

	Speed and Area Optimizations
	Critical Path Estimation with Native Floating Point: Report critical path for designs with single-precision floating-point operations
	Simplification of constant operations and other optimizations for fixed-point and floating-point arithmetic operations
	Improvement to reduction of matching delays in clock-rate pipelining regions across hierarchical boundaries
	MaxOversampling and MaxComputationLatency parameters being removed

	IP Core Generation and Hardware Deployment
	AXI4-Stream for Intel FPGA: Generate IP cores with the AXI4-Stream interface targeting Intel FPGAs
	Intel SoC Reference Design: Target the Intel Arria 10 SoC Development Kit with DDR4 external memory access
	Simulink test point port mapping in IP Core Generation and Simulink Real-Time FPGA I/O workflows
	Audio Reference Design Example on ZYBO Board: Create custom reference design to run audio algorithm on ZYBO board
	IP Core Generation of I2C Master Controller Example: Generate IP core for Stateflow-Based I2C Master Controller to configure Audio Codec chip
	Ethernet programming method being removed
	Updates to supported software

	R2017b
	Model and Architecture Design
	Model Advisor Checks: Check and update your Simulink model for HDL code generation compatibility
	Simulink Test Points in HDL: Debug internal signals by automatically routing the signals to top-level HDL ports
	Floating-point Support for Simulink Real-Time FPGA I/O: Generate single-precision floating point HDL for communication over the Simulink Real-Time PCIe Interface
	Additional single-precision floating-point operators and block support
	Improvements to native floating-point operators and algorithms
	Input Range Reduction setting for Trigonometric Function blocks in native floating-point mode
	Block-level latency customization for Discrete Transfer Function and Discrete Time Integrator blocks with native floating-point

	Block Enhancements
	Minimum Resource FFT/IFFT: Reduce resource usage with the Burst Radix 2 architecture of the HDL-Optimized FFT (requires DSP System Toolbox)
	Support for scalar addressing mode with vector data input to hdl.RAM System Object
	New HDL RAMs Block Library and hdl.RAM System Object based blocks
	Synchronous versions of Unit Delay blocks with reset and enable ports in Discrete block library
	Bilateral filter, bird's-eye-view transform, and line buffer for vision applications
	HDL code generation support for Bus Element port blocks
	One-hot and two-hot encoding schemes for enumeration types
	Custom header and footer comments in generated HDL code

	Code Generation and Verification
	Changes to HDL Code Generation Panel in Configuration Parameters Dialog Box

	Speed and Area Optimizations
	Vector Input Multiply-Accumulate (MAC) Block: Map arithmetic operations efficiently to FPGA DSP slices
	Hierarchical Clock Rate Pipelining: Apply clock rate pipelining across hierarchical boundaries
	Support for enable-based multicycle path constraints
	Clock-rate pipelining enhancements

	IP Core Generation and Hardware Deployment
	AXI4 Master Interface: Facilitate communication between your design and external memory by using the AXI4 Master protocol for more flexible data access
	IP Core Generation Support for Xilinx System Generator: Generate an HDL IP core for DUT containing System Generator blocks
	INOUT port type support for External Port interface in IP Core Generation workflow
	Faster Simulink Real-Time FPGA I/O model build time with version register in generated IP core
	Default system with External DDR3 Memory Access reference design
	Updates to supported software
	HDL Coder support packages renamed

	R2017a
	Model and Architecture Design
	HDL Floating Point Operations Library: Easily find additional and existing single-precision floating-point blocks supported for HDL code generation
	Floating-Point Latency Customization at Block-Level
	Additional Block and System Object Support with Native Floating Point
	Custom reference model prefix specification
	GenerateWebview parameter name changed to HDLGenerateWebview
	Comments in HDL code for Simulink blocks with text annotations

	Block Enhancements
	For Each Subsystems: Reduce block replication and improve code reuse in HDL-targeted designs
	HDL Optimized Filters: Model and generate optimized hardware implementations for FIR filters (requires DSP System Toolbox)
	HDL Channelizer Block and System Object: Isolate narrowband channels from a wideband signal and generate HDL with efficient multiplier usage (requires DSP System Toolbox)
	Gigasample per Second (GSPS) Signal Processing: Increase throughput of FIR decimation algorithms by using frame input
	Enhancements to MATLAB Function block support in synchronous subsystems
	HDL Coder support for blocks that support bus signal treated as vector
	HDL code generation support for Bus Assignment block with nonvirtual bus
	Additional HDL Coder bus support
	HDL code generation support for System Objects with enumeration types

	Code Generation and Verification
	Native Floating-Point Testbench: Generate SystemVerilog DPI, cosimulation, and FPGA-in-the-loop test benches with single-precision data types (requires HDL Verifier)
	More fixed-size variable information in Fixed-Point Conversion step of HDL Coder App
	Comments in generated HDL code for MATLAB System blocks
	Global reset signals minimization in generated HDL Code
	HDL code generation support for DUT subsystem with custom HDL properties
	Changes in HDL Code Generation Panel in Configuration Parameters Dialog Box
	Syntax Highlighting of Generated HDL Code in HTML Report

	Speed and Area Optimizations
	Improvements to delay balancing in multirate regions
	Functionality Being Removed or Changed

	IP Core Generation and Hardware Deployment
	Data Type Support for AXI4 Slave: Map floating-point signals and vector signals to AXI4 slave interfaces in IP core generation
	Incremental Vivado Synthesis: Enable IP caching for faster synthesis of Xilinx Vivado reference designs
	IP core generation support for Altera Megafunction
	Custom IP repository specification
	Xilinx Virtex-2 FPGA board support being removed
	Updates to supported software

	R2016b
	Model and Architecture Design
	Native Floating Point: Generate target-independent synthesizable RTL from single-precision floating-point models
	HDL Coder support for tunable parameters in data dictionary
	Generic ports for DUT mask parameters
	Simulink diagnostic suppressor option

	Block Enhancements
	Gigasample Per Second (GSPS) Signal Processing: Increase throughput of HDL code generated from Discrete FIR Filter and Integer Delay blocks by using frame input
	Bit-reversed input order for HDL-optimized FFT
	High-throughput polyphase filter bank for HDL example
	HDL support for reset port on Discrete FIR Filter
	HDL Coder support for array of buses
	Synchronous behavior for Resettable Subsystem with State Control block
	HDL optimized Sine and Cosine blocks
	Simpler method to call System objects

	Code Generation and Verification
	Logic Analyzer: Visualize, measure, and analyze transitions and states over time for Simulink signals
	HDL Coder support for creating and attaching configuration sets
	VHDL Architecture Name available in Configuration Parameters dialog box
	RAM with generic ports enhancement
	Stateflow comments generated as comments in HDL
	Tolerance check for floating-point libraries
	Code Generation Report enhancements
	Comprehensive documentation for HDL coding standard rules
	More discoverable logs and reports for fixed-point conversion in HDL Coder app
	Enhancements in generated model for Lookup Tables
	Target and Optimizations pane in HDL Coder Configuration Parameters
	Link to Code Generation Report after HDL code generation

	Speed and Area Optimizations
	Adaptive Pipelining: Specify synthesis tool and target clock frequency for automatic pipeline insertion and balancing
	Clock-rate pipelining enhancements
	Resource sharing enhancements
	Delay balancing failures reported as errors
	Optimization of Delay blocks with nonzero initial condition
	Initialization script specification for Delay blocks without reset

	IP Core Generation and Hardware Deployment
	AXI4-Stream Video Interface: Generate HDL code with the AXI4-Stream Video interface by using the IP core generation workflow
	Customizable FPGA floating-point target configuration
	Additional block support for FPGA floating-point target library mapping
	Default video system reference design
	Custom reference design enhancements
	IP Core Generation workflow for Xilinx and Altera FPGA devices
	Additional FPGA board support for IP Core Generation workflow
	Target clock frequency specification
	Simulink Real-Time FPGA I/O workflow support for Xilinx Vivado
	Speedgoat IO333–325K target hardware support
	Updates to supported software

	R2016a
	Model and Architecture Design
	Gigasample per Second (GSPS) Signal Processing: Increase throughput of HDL-optimized FFT and IFFT algorithms using frame input
	Tunable and nontunable parameter enhancements
	Reusable HDL code enhancements for subsystems with tunable mask parameters
	HDL Coder support for nondirect feedthrough setting in MATLAB Function blocks

	Block Enhancements
	Synchronous Subsystem Toggle: Specify enable and reset behavior for cleaner HDL code by using State Control block
	Region-of-interest selection and grayscale morphology
	Nested bus support enhancements
	Block support enhancements

	Code Generation and Verification
	Faster Test Bench Generation and HDL Simulation: Generate SystemVerilog DPI test benches for large data sets with HDL Verifier
	Code Generation Report enhancements
	Changes to Fixed-Point Conversion Code Coverage
	Progress indicator for HDL test bench generation
	Test bench generation with updated model stop time
	Performance improvement for MATLAB to HDL test bench generation
	Coding standard check for length of control flow statements in a process block
	Warnings for non-ASCII characters in generated HDL code
	Japanese translation for resource report

	Speed and Area Optimizations
	Resource Sharing Enhancements: Share multipliers and gain operations that have different data types
	Biquad Filter block participates in subsystem HDL optimizations
	More functions for Multiply-Add block to map to DSP
	Generation of Multiply-Add blocks for complex multiply operations
	RAM mapping for pipeline and floating-point delays
	Initialization script generated for Delay blocks without reset for ModelSim simulation

	IP Core Generation and Hardware Deployment
	Hard Floating-Point IP Targeting: Generate HDL to map to Altera Arria 10 floating-point units at user-specified target frequency
	End-to-end scripting for Simulink Real-Time FPGA I/O workflow
	SoC device programmed by using Ethernet connection
	Custom programming method for IP Core Generation workflow
	Interface connection name and type for custom reference designs
	Updates to supported software
	Automatic generation of FPGA top-level wrapper based on workflow

	R2015aSP1
	R2015b
	Model and Architecture Design
	Model Arguments: Parameterize instances of model reference blocks
	Integration with Xilinx Vivado System Generator for DSP blocks
	struct input and output for top-level MATLAB design function
	Tunable parameters in MATLAB Function block
	Output initialization requirement for Stateflow Moore Charts
	Enforce ASCII character requirement for model property values

	Block Enhancements
	Expanded Bus Support: Generate HDL for enabled or triggered subsystems with bus inputs and for black boxes with bus I/O
	Library Browser view shows blocks supported for HDL code generation
	Trigonometric Function block with sin or cos function can have vector inputs
	Discrete FIR Filter supports HDL optimizations
	HDL-optimized FIR Rate Conversion block and System object

	Code Generation and Verification
	HDL Coder Configuration Parameters in list view
	Support for configuration parameter Default parameter behavior
	Test bench performance improvements with file I/O
	Image processing examples

	Speed and Area Optimizations
	Quality of Results Improvement: Stream and share resources more broadly and efficiently
	Multiply-Add block
	Hierarchy flattening for masked subsystems and user library blocks
	Loop optimization improvement
	Complex Gain speed optimization
	Redesigned serializer for streaming and resource sharing
	Tapped Delay optimization

	IP Core Generation and Hardware Deployment
	Tunable Parameters: Map to AXI4 interfaces to enable hardware run-time tuning by the embedded software on the ARM processor
	End-to-end scripting from design through IP core generation, FPGA Turnkey, and generic ASIC/FPGA workflows
	Synthesis objective for synthesis tool target optimization
	AXI4-Stream vector interface
	Connect IP core with other IP blocks in custom reference designs
	Kintex UltraScale and Virtex UltraScale device family support in generic ASIC/FPGA and IP core generation workflows

	R2015a
	Model and Architecture Design
	Localized control using pragmas for pipelining, loop streaming, and loop unrolling in MATLAB code
	Model templates for HDL code generation
	Tunable parameter data type and model reference support enhancements
	Include custom or legacy code using DocBlock
	Single library for VHDL code generated from model references
	Timing controller architecture and postfix options in Configuration Parameters dialog box and HDL Workflow Advisor
	Functionality Being Removed or Changed

	Block Enhancements
	Enumeration support at DUT ports
	Map to multiple RAM banks
	Code generation for bus output from Bus Selector and Constant blocks
	Initial condition for Deserializer1D
	Block support enhancements
	Code generation for predefined System objects in MATLAB System block
	Specify filter coefficients using a System object
	Libraries for HDL-supported DSP System Toolbox and Communications Toolbox blocks
	Support for image processing, video, and computer vision designs in new Vision HDL Toolbox product
	Support for ‘inherit via internal rule’ data type setting on FIR Decimation and Interpolation blocks

	Code Generation and Verification
	Coding standard check for X and Z constants
	Coding style improvements
	Example HDL implementation of LTE OFDM modulator and detector with LTE Toolbox

	Speed and Area Optimizations
	Critical path estimation without running synthesis
	Clock-rate pipelining enhancements
	Partitioning for large multipliers to improve clock frequency and DSP reuse on the FPGA
	Highlighting for blocks in the model that prevent retiming
	Resource sharing for adders and more control over shareable resources
	Speed and area optimizations for designs that use Unit Delay Enabled, Unit Delay Resettable, and Unit Delay Enabled Resettable
	Resource sharing for multipliers and adders with input data types in different order
	Vector streaming for MATLAB code

	IP Core Generation and Hardware Deployment
	Mac OS X platform support
	AXI4-Stream interface generation for Xilinx Zynq IP core
	Custom reference design and custom SoC board support
	Automatic iterative optimization for IP core generation and FPGA Turnkey workflows
	Speedgoat IO331-6 digital I/O interface target
	IP core settings saved with model
	Updates to supported software

	R2014b
	Model and Architecture Design
	Custom or legacy HDL code integration in the MATLAB to HDL workflow
	Model reference as DUT for code generation
	Tunable parameter support for Gain and Constant blocks
	Code generation for Stateflow active state output
	Clock enable minimization for code generated from MATLAB designs
	HDL Block Properties dialog box shows only valid architectures
	2-D matrix types in HDL generated for MATLAB matrices

	Block Enhancements
	Code generation for HDL optimized FFT/IFFT System object and HDL optimized Complex to Magnitude-Angle System object and block
	Added features to HDL optimized FFT/IFFT blocks, including reduced latency
	HDL Reciprocal block with Newton-Raphson Implementation
	Serializer1D and Deserializer1D blocks
	Additional blocks supported for code generation
	Composite user-defined System object support
	System object output and update method support
	hdlram renamed to hdl.RAM
	Functionality Being Removed or Changed

	Code Generation and Verification
	Coding standards customization
	HDL Designer script generation
	Traceable names for RAM blocks and port signals
	for-generate statements in generated VHDL code
	Validation model generation regardless of delay balancing results

	Speed and Area Optimizations
	Clock-rate pipelining to optimize timing in multi-cycle paths
	RAM mapping for user-defined System object private properties
	Highlighting for feedback loops that inhibit optimizations
	Optimizations available for conditional-execution subsystems
	Variable pipelining in conditional MATLAB code
	Optimizations available with UseMatrixTypesInHDL for MATLAB Function block

	IP Core Generation and Hardware Deployment
	Support for Xilinx Vivado
	IP core generation for Altera SoC platform
	Custom HDL code for IP core generation from MATLAB
	Target platform interface mapping information saved with model
	Documentation installation with hardware support package

	R2014a
	Model and Architecture Design
	HDL block library in Simulink
	Persistent keyword not needed in HDL code generation
	Negative edge clocking
	Bidirectional port specification
	Port names in generated code match signal names
	ModelReference default architecture for Model block
	Reset for timing controller
	Reset port optimization
	Functionality Being Removed or Changed

	Block Enhancements
	Code generation for enumeration data types
	Code generation for FFT HDL Optimized and IFFT HDL Optimized blocks
	Bus support improvements
	Variant Subsystem support for configurable models
	Trigger signal can clock triggered subsystems
	2-D matrix types in code generated for MATLAB Function block
	64-bit data support
	HDL code generation from MATLAB System block
	System object methods in conditional code
	Dual Rate Dual Port RAM block
	Additional blocks and block implementations supported for code generation

	Code Generation and Verification
	Errors instead of warnings for blocks not supported for code generation
	Ascent Lint script generation
	Incremental code generation and synthesis
	Automatic C compiler setup

	Speed and Area Optimizations
	RAM mapping scheduler improvements
	Performance-prioritized retiming
	Retiming without moving user-created design delays
	Resource sharing factor can be greater than number of shareable resources
	Reduced area with multirate delay balancing
	Serializer-deserializer and multiplexer-demultiplexer optimization

	IP Core Generation and Hardware Deployment
	ZC706 target for IP core generation and integration into Xilinx EDK project
	Automatic iterative clock frequency optimization
	Synthesis attributes for multipliers
	Custom HDL code for IP core generation
	Synthesis and simulation tool addition and detection after opening HDL Workflow Advisor
	xPC Target is Simulink Real-Time
	Updates to supported software

	R2013b
	Model and Architecture Design
	Model reference support and incremental code generation
	Code generation for subsystems containing Altera DSP Builder blocks
	Module or entity generation for local functions in MATLAB Function block
	Reset port optimization
	Load constants from MAT-files

	Block Enhancements
	Code generation for user-defined System objects
	Bus signal inputs and outputs for MATLAB Function block and Stateflow charts
	HDL Counter has specifiable start value
	Maximum 32-bit address for RAM
	Removing HDL Support for NCO Block

	Code Generation and Verification
	Coding style improvements according to industry standard guidelines
	Coding standard report target language enhancement and text file format
	UI for SpyGlass, Leda, and custom lint tool script generation
	File I/O to read test bench data in VHDL and Verilog
	Floating point for FIL and HDL cosimulation test bench generation
	Fixed-point file name change

	Speed and Area Optimizations
	RAM inference in conditional MATLAB code
	Coding style for improved ROM mapping
	Pipeline registers between adder or multiplier and rounding or saturation logic
	Distributed pipelining improvements with loop unrolling in MATLAB Function block

	IP Core Generation and Hardware Deployment
	IP core integration into Xilinx EDK project for ZC702 and ZedBoard
	FPGA Turnkey and IP Core generation in MATLAB to HDL workflow
	Synthesis tool addition and detection after MATLAB-to-HDL project creation
	Synthesis script generation for Microsemi Libero and other synthesis tools
	Floating-point library mapping for mixed floating-point and fixed-point designs
	xPC Target FPGA I/O workflow separate from FPGA Turnkey workflow
	AXM-A75 AD/DA module for Speedgoat IO331 FPGA board
	Speedgoat IO321 and IO321-5 target hardware support
	Support package for Xilinx Zynq-7000 platform
	Support package for Altera FPGA boards
	Support package for Xilinx FPGA boards
	Additional FPGA board support for FIL verification, including Xilinx KC705 and Altera DSP Development Kit, Stratix V edition

	R2013a
	Model and Architecture Design
	Code generation for System objects in a MATLAB Function block
	Output folder structure includes model name
	Prefix for module or entity name
	Functionality being removed

	Block Enhancements
	Single rate Newton-Raphson architecture for Sqrt, Reciprocal Sqrt
	Additional System objects supported for code generation
	Additional blocks supported for code generation

	Code Generation and Verification
	Static range analysis for floating-point to fixed-point conversion
	Cosimulation and FPGA-in-the-Loop for MATLAB HDL code generation
	HDL coding standard report and lint tool script generation
	File I/O to read test bench data in Verilog

	Speed and Area Optimizations
	User-specified pipeline insertion for MATLAB variables
	Resource sharing and streaming without over clocking
	Resource sharing for the MATLAB Function block
	Finer control for delay balancing
	Complex multiplication optimizations in the Product block

	IP Core Generation and Hardware Deployment
	Generation of custom IP core with AXI4 interface
	Coprocessor synchronization in FPGA Turnkey and IP Core Generation workflows
	Speedgoat IO331 Spartan-6 FPGA board for FPGA Turnkey workflow

	R2012b
	Input parameter constants and structures in floating-point to fixed-point conversion
	RAM, biquad filter, and demodulator System objects
	HDL RAM System object
	HDL System object support for biquad filters
	HDL support with demodulator System objects

	Generation of MATLAB Function block in the MATLAB to HDL workflow
	HDL code generation for Reed Solomon encoder and decoder, CRC detector, and multichannel Discrete FIR filter
	HDL code generation
	Multichannel Discrete FIR filters

	Targeting of custom FPGA boards
	Optimizations for MATLAB Function blocks and black boxes
	Generate Xilinx System Generator Black Box block from MATLAB
	Save and restore HDL-related model parameters
	Command-line interface for MATLAB-to-HDL code generation
	User-specifiable clock enable toggle rate in test bench
	RAM mapping for dsp.Delay System object
	Code generation for Repeat block with multiple clocks
	Automatic verification with cosimulation using HDL Coder
	ML605 Board Added To Turnkey Workflow

	R2012a
	Product Name Change and Extended Capability
	Code Generation from MATLAB
	Code Generation from Any Level of Subsystem Hierarchy
	Automated Subsystem Hierarchy Flattening
	Support for Discrete Transfer Fcn Block
	User Option to Constrain Registers on Output Ports
	Distributed Pipelining for Sum of Elements, Product of Elements, and MinMax Blocks
	MATLAB Function Block Enhancements
	Multiple Accesses to RAMs Mapped from Persistent Variables
	Streaming for MATLAB Loops and Vector Operations
	Loop Unrolling for MATLAB Loops and Vector Operations

	Automated Code Generation from Xilinx System Generator for DSP Blocks
	Altera Quartus II 11.0 Support in HDL Workflow Advisor
	Automated Mapping to Xilinx and Altera Floating Point Libraries
	Vector Data Type for PCI Interface Data Transfers Between xPC Target and FPGA
	New Global Property to Select RAM Architecture
	Turnkey Workflow for Altera Boards
	HDL Support For Bus Creator and Bus Selector Blocks
	HDL Support For HDL CRC Generator Block
	HDL Support for Programmable Filter Coefficients
	Notes

	Synchronous Multiclock Code Generation for CIC Decimators and Interpolators
	Filter Block Resource Report Participation
	HDL Block Properties Interface Allows Choice of Filter Architecture
	HDL Support for FIR Filters With Serial Architectures and Complex Inputs
	HDL Support for External Reset Added for Proportional-Integral-Derivative (PID) and Discrete Time Integrator (DTI) Blocks

